
Study Guide For 1Z0-144 by Srikanth Pragada Page No: 1

www.srikanthtechnologies.com

Basics
 You can run script using
 @script.sql or start script.sql at SQL> prompt
 @@script.sql pretends that I have changed the current directory to be that of currently executing file

Two types of variables:
Sql> DEFINE sal =10000

Sql >DEFINE sal -- displays value of x

Sql> select * from employees where salary > &sal;

Bind variables are declared as

SQL> variable sal number

SQL> variable sal

variable sal

datatype NUMBER

SQL> begin

 :sal :=10000;

 dbms_output.put_line(:sal);

 end;

10000

Defines are always character strings expanded by SQL*Plus, and declared variables are used as true bind variables
in SQL and PL/SQL.

variable count number

begin

 select count(*) into :count

 from employees;

end;

/

print :count

Language Fundamentals

 PL/SQL shares with ADA and PASCAL the additional definition of being a block-structured language.
 Inner block is also called as enclosed block, nested block, child block or sub block and outer PL/SQL block may

be called as enclosing block or the parent block.
 A lexical unit in PL/SQL is any of the following:

o Identifier
o Literal

o Delimiter
o Comment

 Identifier must : Start with letter, can have up to 30 char, can include $, _ and #
 Many predefined functions and exceptions are declared in STANDARD and DBMS_STANDARD packages
 select * from v$reserved_words is listing all keywords
 Literal 10.5f is treated as float (binary_float 32 bit), 10.5d as double (binary_double 64 bit).

dbms_output.put_line(q'!abc'xyz!'); -- displays abc'xyz

<<outer>>

declare

 v number := 1000;

begin

 declare

 v number := 20000;

 begin

 dbms_output.put_line(v);

 dbms_output.put_line(outer.v);

 end;

end;

Boolean can have three possible values:

declare

 v number := null;

 r boolean;

begin

 if v < 10000 then

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 2

www.srikanthtechnologies.com

 dbms_output.put_line('Less than 10000');

 else

 dbms_output.put_line('>= 10000');

 end if;

 r := v < 10000;

 case

 when r is null then

 dbms_output.put_line('null');

 when r then

 dbms_output.put_line('true');

 else

 dbms_output.put_line('false');

 end case;

end;

Output :

>= 10000

Null

If a condition returns null then ELSE portion of IF is executed. To fix this problem, use NVL function.

PL/SQL uses short-circuit evaluation
When a condition‟s result is to be copied to a variable then PL/SQL doesn‟t short circuit condition if first condition
is null. In this case, it proceeds to next condition to get the final value for condition.

declare

 v1 number := null;

 v2 number := 10;

 procedure print(r boolean) is

 begin

 case r

 when true then

 dbms_output.put_line('true');

 when false then

 dbms_output.put_line('fale');

 else

 dbms_output.put_line('null');

 end case;

 end;

begin

 print(v1 < 10 and v2 > 20); -- null and false

 print(v1 < 10 or v1 > 20); -- null or null

 print(v2 < 20 or v1 > 20); -- true or null

 print(v2 < 20 and v1 is null); -- true and true

end;

CASE raises an exception when no condition is satisfied and no ELSE is given.

declare

 v1 number := 10;

begin

 case

 when v1 > 100 then

 null;

 when v1 > 50 then

 null;

 end case;

end;

ORA-06592: CASE not found while executing CASE statement

For Loop rules
 Do not declare loop index
 Expressions used in range scheme are evaluated once when loops starts.
 You cannot change value of loop index. Errors : PLS-00363: expression 'I' cannot be used as an assignment

target

 You can use loop label to exit outer loop from inner loop.

declare

begin

 <<iloop>>

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 3

www.srikanthtechnologies.com

 for i in 1..10

 loop

 for j in 1..10

 loop

 dbms_output.put_line(' i = ' || i || ' j = ' || j);

 exit iloop when j > 5; -- exit outerloop from inner loop using label

 end loop;

 end loop;

end;

EXCEPTION HANDLING
 Exceptions are declared in STANDARD package.
 For EXCEPTION_INIT error number cannot be -1403, instead you need to pass 100. It cannot be negative

number less than -1000000

 declare

 invalid_month exception;

 pragma exception_init(invalid_month, -1843);

 v date;

begin

 v := to_date('11-abc-13');

exception

 when invalid_month then

 dbms_output.put_line('Not a valid month');

end;

Exception SQLCODE

CURSOR_ALREDY_OPEN 6511

DUP_VAL_ON_INDEX 1

INVALID_CURSOR 1001

INVALID_NUMBER 1722

LOGIN_DENIED 1017

NO_DATA_FOUND +100 (ORA-1403)

NOT_LOGGED_ON 1012

PROGRAM_ERROR 6501

STORAGE_ERROR 6500

TIMEOUT_ON_RESOURCE 51

TOO_MANY_ROWS 1422

TRANSACTION_BACKED_OUT 61

VALUE_ERROR 6502

ZERO_DIVIDE 1476

If exception is declared in package then its scope is every program whose owner has EXECUTE privilege on
package.

When RAISE_APPLICATION_ERROR is invoked from a procedure then the following happens:
 Execution stops
 Changes made to OUT and INOUT arguments (without NOCOPY) will be reversed.
 Changes to package variables and database objects will NOT be rolled back.

 The error number range is -20000 to -20999.
 Error message can be up to 2K characters (extra chars ignored).
 Third parameter (KeepErrorStack) indicates whether you want to add the error to any already on the stack

(TRUE) or replace it (default is false).

 WHEN OTHERS must be last among exception handlers

 SQLCODE returns error number. 0 if no error occurred.
 SQLERRM is a function that returns the error message for a particular error code. If you don‟t pass error code,

it uses SQLCODE to get error code.
 Maximum error message returned by SQLERRM is 512 bytes.

dbms_utility.format_error_backtrace

dbms_utility.format_error_stack
dbms_utility.format_call_stack

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 4

www.srikanthtechnologies.com

declare

 procedure p1

 is

 v date;

 begin

 v := to_date('11-abc-13');

 end;

begin

 dbms_output.put_line(sqlerrm(-1403));

 p1;

exception

 when others then

 dbms_output.put_line('BackTrace');

 dbms_output.put_line(dbms_utility.format_error_backtrace);

 dbms_output.put_line('Call Stack');

 dbms_output.put_line(dbms_utility.format_call_stack);

 dbms_output.put_line('Error Stack');

 dbms_output.put_line(dbms_utility.format_error_stack);

end;

ORA-01403: no data found

BackTrace

ORA-06512: at line 7

ORA-06512: at line 11

Call Stack

----- PL/SQL Call Stack -----

 object line object

 handle number name

23D4A4F4 18 anonymous block

Error Stack

ORA-01843: not a valid month

All user-defined exception have error code 1 and message “User Defined Exception”.

select sq.nextval from dual; Is using autonomous transaction. So even the enclosing transaction fails, it is not
rolledback.

Any outstanding work performed by a statement that fails will be undone.

create or replace procedure changejob(p_empid number, p_jobid varchar) is

begin

 insert into logtable values(sysdate, 'Update ' || p_empid || ' with ' || p_jobid);

 update employees set job_id= p_jobid

 where employee_id = p_empid;

end;

set serveroutput on

declare

 d date;

begin

 changejob(111,'IT_OG');

exception

 when others then

 select max(ed) into d

 from logtable;

 dbms_output.put_line(d);

 raise_application_error(-20111,'Invalid JOBID');

end;

The above program calls stored procedure, which inserts a row into LOGTABLE. As the block that calls stored
procedure handles exception but raises application error, all changes made by stored procedure are undone.

If you don‟t raise application error then the insert is not undone and transaction is still left uncommitted.

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 5

www.srikanthtechnologies.com

 The following program displays ERROR as output.
set serveroutput on

declare

 e exception ;

begin

 declare

 e exception;

 begin

 if true then

 raise e;

 end if;

 end;

exception

 when others then

 dbms_output.put_line('Error');

end;

Data Types

 Oracle 11g LOB can hold up to 128 terabytes
 BINARY_FLOAT and BINARY_DOUBLE types support special value NaN (Not a number) as well as positive and

negative infinity. Their application can lead to performance gains as arithmetic involving these binary types is

performed in hardware whenever the underlying platform allows.

 SIMPLE_INTEGER, SIMPLE_FLOAT and SIMPLE_DOBLE are like BINARY_INTEGER, BINARY_FLOAT and
BINARY_DOUBLE, but they do NOT allow NULL values and do NOT raise an exception when an overflow occurs.

 PLS_INTEGER and SIMPLE_INTEGER are PL/SQL specific. PLS_INTEGER is an integer with arithmetic
implemented in hardware.

 For loop counters are PLS_INTEGERS
 PLS_INTEGER and BINARY_INTEGER are identical.

 SIMPLE_INTEGER is a subtype of PLS_INTEGER with NOT NULL constraint.

name datatype [NOT NULL] [:= | DEFAULT default_assignment];

count integer not null := 10;

count integer not null default 10;

constant_name CONSTANT datatype [NOT NULL] { := | DEFAULT } expression

 Anchored Declarations: %TYPE or %ROWTYPE.

 Anchor also establishes a dependency between the code and anchored element. If elements change then
anchored elements are marked as INVALID.

 A NOT NULL constraint of one pl/sql variable is applied to another variable declared with %TYPE.
 A NOT NULL constraint from a database column is not automatically transferred to a variable that is declared

with %TYPE.

declare

 v employees.employee_id%type; -- db not null is not applied to variable

 v1 number not null := 10;

 v2 v1%type; -- error as it is also not not variable.

begin

 null;

end;

SUBTYPES
You can declare your own alias or subtypes to predefined data types.

SUBTYPE subtype IS basetype

Constrained subtype restricts subtype using RANGE option.

Subtype POSITIVE IS BINARY_INTEGER RANGE 1 .. 2147483647;

CAST function is used to convert one type to another.

Selet Cast (hire_date as VARCHAR2(20)) from employees;

V : = Cast (sysdate as varchar2); -- do not specify size of target type.

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 6

www.srikanthtechnologies.com

 VARCHAR2 and CHAR can store up to 32767 bytes in PL/SQL. But they can store 4000 and 2000 respectively

in SQL.

 You can declare VARCHAR2 either for bytes or characters.

Name varchar2(10 char);

 Name occupies n no. of bytes for each char. In some character encoding it may be more than one byte for a

char.
 Whether it takes byte or char depends on NLS_LENGTH_SEMANTICS init param, which is set to BYTE.

 STRING and VARCHAR are subtypes of VARCHAR2
 National char string is prefixed with n „ string „ and u „ string „ for Unicode code point.
 When you concatenate strings using CONCAT, if input strings are NON-CLOB then result is VARCHAR2,

otherwise CLOB. If one is null then other one is returned, if both are null then null is returned.

CONCAT(„abc‟,null)  abc

CONCAT(null,null)  NULL

 Set NLS_COMP to LINGUISTIC to tell DB to use NLS_SORT for string comparison. NLS_SORT can be set to

BINARY_CI to have case-insensitive search.

SUBSTR („String‟, -2)  Goes from end of the string towards beginning. Output : ng

 Empty strings are considered to be NULL.
 CHAR variable is not considered NULL because they are never truly empty.

String Comparison
 If two are CHAR variables, then it uses blank-puddings comparison, where shorter of two strings is padded to

longer value.

 If at least one string is VARCHAR then it uses non-blank-padding comparison.
 Literal are always considered as fixed-length CHAR datatype.
 NUMBER is implemented as a completely platform-independent fashion. It can stored from 1.0E-130 to

1.0E126-1.
 PLS_INTEGER (-2147383648 to +2177483647) and BINARY_INTEGER cannot be stored in database.
 Precision is 1 to 38, scale is -84 to 127.

DateTime Data Types

Date Stores date and time resolved to second. Doesn‟t include time zone.

TimeStamp [(precision)] Stores date and time resolved to billionth of a second (9 decimal places of
precision).

TimeStamp [(precision)]
With Time Zone

Timestamps + time zone

TimeStamp [(precision)]

With Local Time Zone

Same as timestamp, but sensitive to time zone differences. Automatically

converted to local time zone from database time zone. Stores value in Database
time zone, but converts to local time zone.

 Precision refers to number of decimals allowed for faction of second. Default is 6 and max is 9.
 Timestamp(0) is like Date.

 TimeStamp takes up 7 bytes of storage (like DATE) when no subsecond is stored. With subsecond it takes up

to 11 bytes.
 UTC - Coordinated Universal Time. Formally known as GMT (Greenwich Mean Time) or Zulu Time.
 PL/SQL will implicitly cast DATEs to TIMESTAMPs in subtraction expression.

Function Time Zone Return type
CURRENT_DATE Session Date

CURRENT_TIMESTAMP Session Timestamp with time zone

LOCALTIMESTAMP Session Timestamp

SYSDATE Database Date

SYSTIMESTAMP Database Timestamp with time zone

DBTIMEZONE Database Varchar2

SESSIONTIMEZONE Session Varchar2

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 7

www.srikanthtechnologies.com

Conversion function

TO_DATE(string [,format [, nls_language]])

TO_DATE(number [,format [, nls_language]]) -- Julian date to date

TO_TIMESTAMP(string [,format [, nls_language]])

TO_TIMESTAMP_TZ(string [,format [, nls_language]])

NLS_LANGUGAE is the language to be used to interpret names used.

 TZD is time zone daylight saving time
 TZR is time zone region
 TZH is time zone hours
 TZM is time zone minutes

select * from v$timezone_names where tzabbrev = 'IST';

Alter session set time_zone=timezone; // Changes time zone of current session.

Interval data types

Interval year [(year_precision)] to month

Interval day [(day_precision)] to second [(sec_precision)]

 Year_precision is 0 to 4 digits. Default is 2.
 Day_precision is 0 to 9. Default is 2.
 Frac_Sec_precision is 0 to 9. Default is 6.

You can convert number to interval with the following functions:

NUMTOYMINTERVAL (called as num to Y M interval)

MUMTODSINTERVAL (called as num to D S interval)

NOTE: YMINTERVAL_UNCONSTRAINED and DSINTERVAL_UNCONSTRAINED are interval data types with no loss
of precision.

A string can be converted to Interval using:

TO_YMINTERVAL(„Y-M‟)

TO_DSINTERVAL(„D HH:MI:SS.FF‟)

You can add and subtract interval types provided they are of same type.

Interval literals

INTERVAL „char‟ start_element To end_element

ymi := INTERVAL ‟40-4‟ year to month;

ymi := INTERVAL ‟40‟ year;

dsi := INTERVAL ‟10 1:1:2.10‟ day to second;

declare

 d1 timestamp := timestamp '2013-07-01 22:45:00.00';

 d2 date := to_date('1-jan-2013');

 d3 timestamp := to_timestamp('01-jan-2013 10:10:10.00 pm');

 iytm interval year to month;

 idts interval day(4) to second;

 d4 timestamp with time zone :=

 to_timestamp_tz('2013-07-01 22:45:00 -4:00','yyyy-mm-dd hh24:mi:ss tzh:tzm');

begin

 iytm := (d1 - d2) year to month;

 dbms_output.put_line(iytm);

 idts := (d1 - d2) day to second;

 dbms_output.put_line(idts);

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 8

www.srikanthtechnologies.com

 dbms_output.put_line(d4);

 dbms_output.put_line(extract(day from d1));

 dbms_output.put_line(extract(minute from idts));

end;

+00-06

+0181 22:45:00.000000

01-JUL-13 10.45.00.000000 PM -04:00

1

45

declare

 a interval year to month := numtoyminterval(20,'Month');

 b interval day to second := numtodsinterval(1000,'Minute');

 c interval day to second := to_dsinterval('10 10:20:30');

 d interval day to second := systimestamp - sysdate;

begin

 dbms_output.put_line(a);

 dbms_output.put_line(b);

 dbms_output.put_line(c);

 dbms_output.put_line(d);

end;

+01-08

+00 16:40:00.000000

+10 10:20:30.000000

+00 00:00:00.888000

NLS_DATE_FORMAT specifies the default date format.
V$NLS_PARAMETERS contains information about NLS parameters.

Date and Timestamp literals
The following are allowed date and timestamp literals.

DATE „YYYY-MM-DD‟

TIMESTAMP „YYYY-MM-DD HH:MI:SS[.FFFFFFFFF] [{+|Z} HH:MI]‟

CAST Function

Can be used to convert a string to any date time type.
PL/SQL does not allow size to be specified for target.

CAST (source as target)

Extract Function
Used to extract a date component from datetime and interval.

EXTACT (component FROM {datetime | interval})

RECORDS

 A record is a composite type that contains one or more members.
 Benefits : Data abstraction, aggregate operations, cleaner code
 Types : Table base records (JOBS%ROWTYPE), cursor based records (job_cur%ROWTYPE), and programmer-

defined record.

 A record can be declared in declaration section or package specification.

TYPE record_type IS RECORD

(

 Member type [[NOT NULL] :=|DEFAULT default_value],

 …

);

variable record_type;

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 9

www.srikanthtechnologies.com

Type for member may be:

 Scalar type
 Programmer-defined subtype

 Anchored declaration using %TYPE and %ROWTYPE

 PL/SQL collection type
 REF CURSOR

Record level operations that are supported:

 Copy contents of one record to another as long as they are of same record type or compatible %ROWTYPE
records (i.e. records have same number of fields and same or compatible datetypes)

 Set record to NULL
 Pass as parameter
 Return record from function

You can‟t do the following:

 Use IS NULL to see if all fields in the record have null values.
 Compare two records

declare

 type job_rt is record

 (job_id jobs.job_id%type,

 job_title varchar2(150),

 min_sal number(5),

 max_sal number(5)

);

 job1 job_rt;

 job2 jobs%rowtype;

begin

 select * into job2 -- copy a row into record

 from jobs

 where job_id = 'IT_PROG';

 job1 := job2; -- fields need not have same name and sizes

 dbms_output.put_line(job1.job_title);

 dbms_output.put_line(job1.min_sal);

 job1.min_sal := 5000;

 -- update with record

 update jobs set row = job1

 where job_id = 'IT_PROG';

 job1.job_id := 'DBA';

 job1.job_title := 'Database Administrator';

 job1.min_sal := 10000;

 job1.max_sal := 20000;

 insert into jobs values job1; -- INSERT with record

end;

COLLECTIONS

 Collection is like an array in tradition languages
 They allow you to maintain in-program lists of data
 Improve multirow SQL operations.
 Cache database information
 It is a single dimensional list of homogeneous elements.
 They are also called as arrays and tables
 You can create two-dimensional array by declaring collection of collections.

 Collection can be bounded (VARRAY) or unbounded (Associative Array and Table)
 Can be dense (if all elements between first and last element are defined and given value), or sparse (if rows

are not defined and populated sequentially).
 Nested table and varray are can be stored in database. The table that host them is called as outer table.

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 10

www.srikanthtechnologies.com

Comparison of Collections

 Varray NestedTable Associative Arrays(Index by tables)

1.Fixed Number of elements Any number of elements Any number of elements

2.Subscript will be sequence no Subscript will be sequence no Substring can be arbitrary number

 or string

3.Initialization required Initialization required Initialization Not required

4.Extend required Extend required Extend not required

5.Cannot be sparse Can be sparse NA

6.Can be stored in DB Can be stored in DB Cannot be stored in DB as a column

Associative Arrays
 They are single-dimensional, unbounded, spare collection of homogenous elements.
 Also known as index-by tables
 Index can be PLS_INTEGER or VARCHAR2
 In case of index by VARCHAR2, order of elements is decide by character set.
 INDEX BY clause can be any of the following;

1. BINARY_INTEGER

2. PLS_INTEGER
3. POSITIVE
4. NATURAL
5. SIGNTYPE (-1,0, 1)
6. VARCHAR2(32767)
7. Table.column%TYPE

8. Cursor.column%TYPE
9. Package.variable%TYPE
10. Package.subtype

Nested Tables
 Single-dimensional, unbounded collections of homogenous elements.
 Initially dense but can become sparse through deletions
 Can be defined both in PL/SQL and database

 They are multisets, which means there is no inherent order to the elements in the nested table.

declare

 type jobs_type is table of jobs%rowtype;

 jobs_tab jobs_type;

begin

 select * bulk collect into jobs_tab

 from jobs;

 for idx in jobs_tab.first .. jobs_tab.last

 loop

 dbms_output.put_line(jobs_tab(idx).job_title);

 end loop;

end;

VARRAYS
 Single dimensional
 They are bounded and never sparse.

 Can be used in PL/SQL and the database
 The order is preserved
 BOOLEAN, NCHAR, NCLOB, NVARCHAR2, REF CURSOR, TABLE and VARRAY(non-sql datatype)
 ALTER TYPE type MODIFY LIMIT 100 INVALIDATE; modifies limit and invalidates all dependent object
 ALTER TYPE type MODIFY ELEMENT TYPE varchar2(100) CASCADE; Propagates the change to both the type

and table dependents.

/* Associative array example */

declare

 type phones_aa is table of varchar2(10) index by varchar(20);

 phones phones_aa;

 idx varchar2(20);

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 11

www.srikanthtechnologies.com

begin

 phones('srikanth') := 939333393;

 phones('praneeth') := 939334343;

 phones('padmaja') := 934343433;

 dbms_output.put_line(phones('padmaja'));

 -- print all

 idx := phones.first;

 while idx is not null

 loop

 dbms_output.put_line(phones(idx));

 idx := phones.next(idx);

 end loop;

end;

MULTISET operators
Multiset operators combine the results of two nested tables into a single nested table.

 MULTISET EXCEPT
 MULTISET UNION

 MULTISET INTERSECT

-- Nested table demo

declare

 type phones_nt is table of varchar(20);

 phones phones_nt;

 officephones phones_nt;

 homephones phones_nt;

begin

 phones := phones_nt(); -- create nested table

 officephones := phones_nt('2222222222');

 phones.extend(3);

 phones(1) := '1111111111';

 phones(2) := '2222222222';

 phones(3) := '3333333333';

 homephones := phones multiset except officephones;

 for idx in phones.first .. phones.last

 loop

 dbms_output.put_line(phones(idx));

 end loop;

 -- homephones

 for idx in homephones.first .. homephones.last

 loop

 dbms_output.put_line(homephones(idx));

 end loop;

 phones.delete(2); -- delete second items

 for idx in phones.first .. phones.last

 loop

 begin

 dbms_output.put_line(phones(idx));

 exception

 when no_data_found then

 dbms_output.put_line('Item at ' || idx || ' is not found');

 end;

 end loop;

end;

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 12

www.srikanthtechnologies.com

-- VARRAY Example

declare

 type phones_va is varray(10) of varchar(20);

 phones phones_va;

begin

 phones := phones_va('111111','222222');

 phones.extend(1);

 phones(3) := '333333';

 for idx in phones.first .. phones.last

 loop

 dbms_output.put_line(phones(idx));

 end loop;

 phones.trim; -- delete last item

 for idx in phones.first .. phones.last

 loop

 dbms_output.put_line(phones(idx));

 end loop;

end;

Collection Methods

Method Meaning

COUNT No. of elements in collection

DELETE[(stat [,end])] Removes an element. With VARRAY, you can delete only the entire contents of the
collection.

EXISTS Returns true if element exists

EXTEND Increases number of elements in VARRAY or NESTED TABLE

FIRST Return smallest subscript

LAST Returns largest subscript

LIMIT Returns maximum no. of elements in VARRAY

PRIORT, NEXT Return subscript that is before or next of the given subscript

TRIM Removes element from the end of the collection.

 If COUNT is used with uninitialized nested table or VARRAY, it raises COLLECTION_IS_NULL predefined

exception.
 You cannot DELETE an element from VARRAY. Only TRIM can be used. DELETE when used with VARRAY

deletes all elements.

 EXTEND cannot be used with associative arrays.
 EXTEND(n,i) appends n number of elements. If I is given then copies value from ith element to appended

elements. Mainly used with collection of NOT NULL nature.
 If VARRAY is extended beyond the limit then SUBSCRIPT_BEYOND_LIMIT exception is raised.

Collection pseudo-functions

CAST Maps a collection of one type to another type

MULTISET Maps a database table to collection.

TABLE Maps a collection to database table. It is inverse of MULTISET.

 SET(collection) returns a unique collection

 Collection IS A SET return true if collection is unique
 Collection IS NOT A SET returns true if collection has duplicates.

declare

 type phones_nt is table of varchar(20);

 phones phones_nt;

 phones2 phones_nt;

begin

 phones := phones_nt(); -- create nested table

 phones.extend(3);

 phones(1) := '1111111111';

 phones(2) := '1111111111';

 phones(3) := '3333333333';

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 13

www.srikanthtechnologies.com

 if phones is a set then

 dbms_output.put_line('Yes.Unique SET');

 else

 dbms_output.put_line('Collection is not unique');

 end if;

 phones2 := set(phones);

 dbms_output.put_line(phones2.count);

end;

Insert into jobs values job_rec;

Update jobs set row = job_rec;

RETURNING
With this we can reduce network round trips, as it provides updated data after the change without we needing to

query data again.

declare

 type jobs_table is table of jobs%rowtype;

 jobs_tab jobs_table;

 new_job jobs%rowtype;

begin

 select * bulk collect into jobs_tab from jobs;

 for idx in jobs_tab.first..jobs_tab.last

 loop

 jobs_tab(idx).min_salary := jobs_tab(idx).min_salary + 500;

 update jobs set row = jobs_tab(idx)

 where job_id = jobs_tab(idx).job_id

 returning job_id, job_title, min_salary, max_salary

 into new_job;

 dbms_output.put_line(new_job.min_salary);

 end loop;

end;

Restrictions on record-based updates and inserts :
 You can use record variable only on the right side of SET, in VALUES and in INTO of RETURNING

 ROW keyword must be used in UPDATE and no other values are allowed

 You cannot INSERT or UPDATE with a record that contains nested record or a function that returns nested
record.

 You cannot use records in DML statement that are executed dynamically.

Autonomous Transaction
Can be defined for any of the following:

 Top-level (but not nested) anonymous PL/SQL block
 Functions and procedures defined in package or standard alone
 Methods of Object type
 Triggers

When To Use

 Logging mechanism

 Perform commits and rollbacks in database trigger
 Reusable application components
 Avoid mutating table trigger error for queries
 Call user-defined function in SQL that modify tables
 Retry counter

Rules
 If an autonomous transaction attempt to access resource help by main transaction then a deadlock can occur.
 To exit a program that has executed at least one DML, you must perform an explicit commit or rollback.
 You can have multiple commit or rollback statements inside your autonomous block.
 TRANSACTIONS parameter in init file specifies the max no. of transactions allowed concurrently in a session.

Default is 75.

 Once changes are committed those changes are visible immediately in the main transaction. However, you can
prevent it by using SET TRANSACTION ISOLATION LEVEL SERIALIZABLE.

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 14

www.srikanthtechnologies.com

Data Retrieval

Typical Query Operations
The following operations take place while executing a query.

Phase What is done?

Parse Ensures command is valid and determines execution plan

Bind Associate value from your program with placeholders inside your SQL statement.

Open Result set for SQL statement is determined. Pointer is set to first row.

Execute Statement is run within SQL Engine.

Fetch Retrieves next row.

Close Closes cursor and release memory.

%BULK_ROWCOUNT
Used with FORALL returns the number of rows processed by DML execution.
%BULK_EXCEPTION
Used with FORALL, returns exception information that may have been raised by each DML execution.

 Select list (selected columns in SELECT) can contain PL/SQL variables and complex expressions.
 All implicit cursor attributes return NULL if no implicit cursor has yet been executed in the session.

CURSOR emp_cur RETURN Employees%ROWTYPE

 Is select * from employees where department_id = 10;

 RETURN clause can specify table%ROWTYPE, anothercursor%ROWTYPE, or programmer-defined record.
 Cursor can be hidden in a package. Especially put cursor select in package body so that you can change

SELECT without invalidating dependent object of that package.
 When you try to FETCH beyond end of cursor, PL/SQL will not raise exception and it won‟t do anything to alter

the values of variables in INTO clause.

create or replace package job_pkg is

 cursor jobs_cur return jobs%rowtype;

end;

create or replace package body job_pkg is

 cursor jobs_cur return jobs%rowtype

 is

 select * from jobs;

end;

set serveroutput on

begin

 for jobrec in job_pkg.jobs_cur

 loop

 dbms_output.put_line(jobrec.job_title);

 end loop;

end;

You can assign default value for cursor parameters.

CURSOR emp_cur (dept_id number := 10)

Is

query

 FOR UPDATE OF automatically obtains row-level locks on all rows identified by the SELECT statement.
 Rows remains locked until you COMMIT or ROLLBACK.

 If you do not include one or more columns after OF keyword, the database will lock all identified rows across
all tables listed in the FROM clause.

 NOWAIT tell the database not to wait if the table is locked by another user. In this case control is immediately
returned to your program.

 You can also use WAIT to specify maximum number of seconds the database should wait to obtain the lock.
 You cannot perform a FETCH on FOR UPDATE cursor after you COMMIT or ROLLBACK.

Cursor Variable
 Cursor variable is a reference to a cursor
 It provides mechanism for passing results of queries between PL/SQL programs.

 You can use standard cursor attributes like %ISOPEN, %FOUND etc. with cursor variables
 Cursor variable can be used in assignment
 If you assign one cursor variable to another then they both become aliases for the same cursor object.

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 15

www.srikanthtechnologies.com

 Two cursor variables are compatible if any of the following is true:
o Both variables are of strong type and with same rowtype
o Both variables are of weak type, regardless of rowtype_name
o One variable is strong type and other is weak.

 A cursor object remains accessible as long as at least one active cursor variable refers to that cursor object.

 Cursor variables cannot be declared in package
 Cannot be passed in remote procedure calls
 Cannot be tested for equality, inequality or nullity using comparison operators
 Cannot assign NULL to cursor variable
 Cannot store in database
 Cannot be stored as an element of a collection

Type cursor_type_name IS REF CURSOR [RETURN return_type];

Type emp_curtype IS REF CURSOR RETURN emp%ROWTYPE; -- Strong type.

TYPE curtype IS REF CURSOR; -- Weak type

My_cursor SYS_REFCURSOR; -- predefined weak type

declare

 type job_curtype is ref cursor return jobs%rowtype;

 jobcur job_curtype;

 jobrec jobs%rowtype;

 type weak_curtype is ref cursor;

 weakcur weak_curtype; -- or weakcur SYS_REFCURSOR;

 v_job_title jobs.job_title%type;

 v_firstname varchar2(50);

 emp_cur sys_refcursor;

 procedure getemployees(p_emp_cur out sys_refcursor) is

 begin

 open p_emp_cur for select first_name from employees order by 1;

 end;

begin

 /* strongly typed cursor */

 open jobcur for select * from jobs;

 fetch jobcur into jobrec;

 dbms_output.put_line(jobrec.job_title);

 close jobcur;

 /* weakely typed cursor */

 open weakcur for select job_title from jobs order by job_title;

 fetch weakcur into v_job_title;

 dbms_output.put_line(v_job_title);

 close weakcur;

 getemployees(emp_cur);

 fetch emp_cur into v_firstname;

 dbms_output.put_line(v_firstname);

 close emp_cur;

end;

Cursor Expression
 Returns a nested cursor from within a query.
 It is denoted by CURSOR operator
 Can be used in explicit cursor declaration, dynamic SQL and REF CURSOR declarations and variables
 Cannot be used in implicit query.
 Cursor expressions can appear only in the outermost select list of query
 Can be placed in SELECT that is not nested in any other query expression, except when it is defined as a sub-

query of the cursor expression itself.
 Cursor expression cannot be used when declaring a view
 Cannot perform BIND and EXECUTE operations on cursor expressions when using CURSOR expression in

dynamic SQL.

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 16

www.srikanthtechnologies.com

declare

 cursor dept_employees is

 select department_name,

 CURSOR(select first_name from employees

 where department_id = d.department_id) as employees

 from departments d;

 empcur sys_refcursor; -- will hold employees details

 v_deptname varchar2(50);

 v_firstname varchar2(50);

begin

 open dept_employees;

 loop

 fetch dept_employees into v_deptname, empcur;

 exit when dept_employees%notfound;

 dbms_output.put_line(v_deptname);

 -- no need to open EMPCUR as it is already open for the current row

 loop

 fetch empcur into v_firstname;

 exit when empcur%notfound;

 dbms_output.put_line(lpad(v_firstname,30,'*'));

 end loop;

 end loop;

end;

Dynamic SQL
The following are the possibilities with dynamic SQL

 You can use DDL statements

 Support ad-hoc queries of web applications
 Softcode business rules and formulas

EXECUTE IMMEDIATE sql_string

 [INTO variables or record]

 [USING [IN | OUT | IN OUT] bind_argument] …

 Mode is relevant only for PL/SQL. Default is IN and that is the only mode for SQL.

 If sql_string ends with semicolon, it will be treated as a PL/SQL block.
 NDS supports all SQL datatypes. You may not bind values in the USING clause whose datatypes are specific to

PL/SQL such as Boolean, associative arrays and user-defined records.
 You can use BULK COLLECT to retrieve multiple rows in dynamic query.
 We can use USING clause in OPEN FOR statement
 You cannot use bind variables for schema elements (tables, columns etc.) or entire chunks of SQL statement

(such as WHERE clause).
 Binding is done after parsing and before execution.
 When you use RETURNING clause then OUT bind variables can be used.

 IN OUT and OUT bind variables are also used when calling PL/SQL programs dynamically
 You can bind values only to variables in PL/SQL block that have SQL type. For ex, Boolean cannot be used.
 For dynamic SQL, you must pass value for each placeholder even if they are duplicated.
 For dynamic PL/SQL, you must pass value for each unique placeholder.
 Passing null value is done either by un-initialized variable or TO_NUMBER(NULL) etc. functions.

EXECUTE IMMEDIATE „update employees set salary = :sal where hire_date is null‟

 using no_salary;

EXECUTE IMMEDIATE „update employees set salary = :sal where hire_date is null‟

 using to_number(null);

Methods
 No queries. DDL and DML with no bind variables.
 No Queries. DML with fixed number of bind variables
 Queries with fixed number of columns and bind variables, retrieving a single row or multiple rows.
 Statement with number of columns selected (for query) or the number of bind variables is not known until

runtime.

Dynamic PL/SQL
 Must be a valid PL/SQL block

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 17

www.srikanthtechnologies.com

 Must start with DECLARE or BEING with END at the end
 It must end with ; otherwise is it not considered as PL/SQL
 Dynamic block can access only PL/SQL Code elements that have global scope (procedures, package).
 Dynamic PL/SQL blocks execute outside the scope of local enclosing block.

 Exception can be handled by local block in which the string was run with EXECUTE IMMEDIATE

 Dynamic PL/SQL is not treated as nested block.

DBMS_SQL Methods

VARCHAR2S Maximum bytes per line is 256.

VARCHAR2A Maximum bytes per line is 32676

DESC_TAB Provides information about columns

DESCRIBE_COLUMNS Retrieves column information

DEFINE_COLUMNS Defines columns. Column numbers are used, not names

EXECUTE Executes command

FETCH_ROWS Fetches row

LAST_ROW_COUNT Returns row count

COLUMN_VALUE Gets value from a column

TO_REFCURSOR converts a cursor number to weakly typed cursor variable

TO_CURSOR_NUMBER converts a cursor variable (weak or strong) to cursor number

It is possible to avoid PARSE phase when you know that the SQL string is not changing and only bind variables are
changing.

/* DBMS_SQL Example */

declare

 cmd varchar2(100);

 cur pls_integer;

 rows integer;

 title varchar2(30);

begin

 cur := DBMS_SQL.Open_cursor;

 cmd := 'select job_title from jobs';

 dbms_sql.parse(cur, cmd, DBMS_SQL.NATIVE);

 DBMS_SQL.DEFINE_COLUMN(cur,1,title,30);

 rows := DBMS_SQL.EXECUTE(cur);

 LOOP

 IF DBMS_SQL.FETCH_ROWS(cur) > 0 THEN

 DBMS_SQL.COLUMN_VALUE(cur, 1, title);

 dbms_output.put_line(title);

 ELSE

 EXIT;

 END IF;

 END LOOP;

 dbms_sql.close_cursor(cur);

exception

 when others then

 dbms_sql.close_cursor(cur);

 dbms_output.put_line(sqlerrm);

end;

/* TO_CURSOR_NUMBER example */

declare

 procedure execute_select(col_list varchar2)

 is

 cur pls_integer;

 rows integer;

 curvar SYS_REFCURSOR;

 colcnt number;

 desctab dbms_sql.desc_tab;

 strvalue varchar2(100);

 begin

 open curvar for ' select ' || col_list || ' from jobs';

 cur := dbms_sql.to_cursor_number(curvar);

 dbms_sql.describe_columns(cur,colcnt,desctab);

 for i in 1..colcnt

 loop

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 18

www.srikanthtechnologies.com

 dbms_sql.define_column(cur,i,strvalue,200);

 END LOOP;

 while dbms_sql.fetch_rows(cur) > 0

 loop

 for i in 1..colcnt

 loop

 dbms_sql.column_value(cur,i,strvalue);

 dbms_output.put(strvalue || ' ');

 end loop;

 dbms_output.put_line('');

 end loop;

 dbms_sql.close_cursor(cur);

 exception

 when others then

 dbms_output.put_line(sqlerrm);

 end;

begin

 -- execute_select('job_id, job_title ');

 execute_select('job_title, max_salary ');

end;

/* TO_REFCURSOR Example */

declare

 phn dbms_sql.varchar2_table;

 phv dbms_sql.varchar2_table;

 procedure execute_select(p_cond varchar2, p_placeholders dbms_sql.varchar2_table, p_values

dbms_sql.varchar2_table)

 is

 cur pls_integer;

 rows integer;

 l_names dbms_sql.varchar2_table;

 curvar SYS_REFCURSOR;

 begin

 cur := DBMS_SQL.Open_cursor;

 dbms_sql.parse(cur, 'select first_name from employees where ' || p_cond , DBMS_SQL.NATIVE);

 for i in 1..p_placeholders.count

 loop

 dbms_sql.bind_variable(cur, p_placeholders(i), p_values(i));

 end loop;

 rows := DBMS_SQL.EXECUTE(cur);

 curvar := dbms_sql.to_refcursor(cur);

 fetch curvar bulk collect into l_names;

 for i in 1..l_names.count

 loop

 dbms_output.put_line(l_names(i));

 END LOOP;

 exception

 when others then

 dbms_output.put_line(sqlerrm);

 end;

begin

 phn(1) := ':deptid';

 phn(2) := ':sal';

 phv(1) := '60';

 phv(2) := '5000';

 execute_select('department_id = :deptid and salary > :sal', phn, phv);

end;

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 19

www.srikanthtechnologies.com

Enhanced Security for DBMS_SQL
 Generation of unpredictable and randomized cursor numbers
 Restriction of use of DBMS_SQL whenever an invalid cursor number is passed to DBMS_SQL
 Rejection of DBMS_SQL operation when the current user attempting to use the cursor has changed from the

user that opened the cursor.

declare

 type job_table_type is table of jobs%rowtype;

 j_tab job_table_type;

 -- type job_ref_cur is ref cursor ;

 job_cur SYS_REFCURSOR;

 job_rec jobs%rowtype;

begin

/*

 execute immediate 'select * from jobs'

 bulk collect into j_tab;

 for i in j_tab.first.. j_tab.last

 loop

 dbms_output.put_line(j_tab(i).job_title);

 end loop;

 */

 open job_cur for 'select * from jobs';

 loop

 fetch job_cur into job_rec;

 exit when job_cur%notfound;

 dbms_output.put_line(job_rec.job_title);

 end loop;

end;

Procedures, Functions and Packages
 AUTHID DEFINER | CURRENT_USER specify either definer rights or invoker rights
 Procedures can also use RETURN statement to terminate procedure.
 You cannot ignore return value of a function. It raises PLS-00221 error.

 If a function is terminated without returning a value then ORA-06503 error is raised.

 Parameters declaration must be unconstrained – VARCHAR2 and not VARCHAR2(20)
 PL/SQL allows a maximum of 64k parameters
 PLS-00230: OUT and IN OUT formal parameters may not have default expressions
 You cannot provide default value for OUT parameter
 When a PL/SQL procedure terminates with exception, values assigned to OUT parameters are not copied to

actual parameters.
 You must list all of your positional parameters before any named notation parameters.

 Local modules must be located after all of the other declarations in declaration section.
 The order or precedence in establishing match for numeric parameter is : PLS_INTEGER or BINARY_INTEGER,

NUMBER, BINARY_FLOAT, then BINARY_DOUBLE.

declare

 v integer :=10;

 v2 binary_double :=20;

 procedure p1(qty number)

 is

 begin

 dbms_output.put_line('p1 with number');

 end;

 procedure p1(qty pls_integer)

 is

 begin

 dbms_output.put_line('p1 with pls_integer');

 end;

 procedure p2(price pls_integer)

 is

 begin

 dbms_output.put_line('p2 with price pls_integer');

 end;

 procedure p2(amount pls_integer)

 is

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 20

www.srikanthtechnologies.com

 begin

 dbms_output.put_line('p2 with amount pls_integer');

 end;

begin

 p1(10);

 p1(v2);

 p2 (amount => v);

 -- p2 (100);

end;

Output :
p1 with pls_integer

p1 with number

p2 with amount pls_integer

If you include p2(100) then the following error :

PLS-00307: too many declarations of 'P2' match this call

PLSQL requires that you declare elements before using them in your code.

Requirements to call function from SQL
 Parameters must be IN mode
 Data types of parameters and return type must be recognized by Oracle Server.
 Function must be stored in database.
 Function may not modify database tables. However, this restriction is relaxed, if your function is defined with

AUTONOMOUS transaction.
 When called remotely or through parallelized function, the function may not read or write the values of

package variables.
 The function can update the values of package variables only if that function is called from SELECT list,

VALUES or SET clause. If function is called in WHERE or GROUP BY, it may not write package variables.
 Named parameters can be used only from 11g.

create table logtable (ed date, entry varchar(200));

create or replace function GetTotal(p_deptno number)

return number as

 PRAGMA AUTONOMOUS_TRANSACTION;

 v_total number;

begin

 select sum(salary) into v_total

 from employees

 where department_id = p_deptno;

 if v_total is null then

 insert into logtable values (sysdate,'No employees found for ' || p_deptno);

 commit;

 end if;

 return v_total;

end;

select department_name, gettotal(department_id)

from departments

DETERMINSTIC
 A function is considered to be deterministic if it returns the same result value whenever it is called with the

same values for its IN and IN OUT arguments.
 No side effects

 System can use a saved copy of the function‟s return result, if applicable.
 Used for functions that are called from SQL
 Functions used in function-based index and query of materialized view must be declared as DETERMINISTIC
 Improves performance

Function fun(parameters) RETURN VARCHAR2 DETERMINISTIC

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 21

www.srikanthtechnologies.com

PARALLEL_ENABLE
Enables the function to be executed in parallel when called from within a SELECT statement.

RESULT_CACHE
Specifies that the input values and result of this function should be stored in the new function result cache.

Example for NOCOPY and Unhandled Exception
declare

 v number(5) := 10;

 w number(5) := 20;

 procedure change(p1 out number, p2 out nocopy number)

 is

 lv number(5);

 begin

 lv := p1;

 p1 := 0;

 p2 := 0;

 raise no_data_found;

 exception

 when others then

 null;

 end;

begin

 dbms_output.put_line(v);

 dbms_output.put_line(w);

 change(v,w);

 dbms_output.put_line(v);

 dbms_output.put_line(w);

exception

 when others then

 dbms_output.put_line('After error :');

 dbms_output.put_line(v);

 dbms_output.put_line(w);

end;

If you handle exception CHANGE then output :
10

20

0

0

If you don‟t handle exception then output :

10

20

After error :

10

20

Note: NOCOPY hint may not be taken seriously.

Packages
 Package is initialized only once per session
 Package data is stored in UGA (User Global Area).

 Cursor variable are not allowed in package specification as they cannot be persisted.

 You can declare data structures like collection type, a record type, or a REF CURSOR
 You can specify AUTHID DEFINER or AUTHID CURRENT_USER. It must be in specification NOT body
 Data in the specification can be accessed from outside of package and it persists.
 Data in the body cannot be accessed from outside but it persists.
 The execution section of package BEGIN .. END is known as initialization section. This is executed for each

session.
 Initialization section can be used for :

o Complex initialization logic
o Cache static session information

 Exception section handles any exceptions raised in the initialization section.

Package Body p1

Is

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 22

www.srikanthtechnologies.com

…

Begin

 …

Exception

 When… then

 …

End;

 If you declare a cursor in spec and define query in body then RETURN clause must specified.
 If you marks a package as SERIALLY_REUSABLE in spec and body then the duration of package data is

reduced from a whole session to a single call of a program in the package.
 Global memory for serialized packages is allocated in SGA, not in UGA.

PACKAGE book_info

IS

 PRAGMA SERIALLY_REUSABLE;

 PROCEDURE p1;

End;

PACKAGE BODY book_info

IS

 PRAGMA SERIALLY_REUSABLE;

 ….

End;

Advantages
 Encapsulate data manipulation
 Avoid the hard-coding of literals
 Improve usability of built-in features
 Group together logically related functionality
 Cache session-static data to improve application performance

Associate Arrays

 EXTEND and TRIM cannot be used with associative arrays.

set serveroutput on

declare

 type country_aa is table of number(5)

 index by varchar2(50);

 countries country_aa;

 country varchar2(50);

begin

 countries('india') := 10000;

 countries('us') := 20000;

 countries('australia') := 4000;

 countries('spain') := 5000;

 country := countries.first; -- first index

 while country is not null

 loop

 dbms_output.put_line(country || ' - ' || to_char(countries(country)));

 country := countries.next(country); -- get next index

 end loop;

end;

output :

australia - 4000

india - 10000

spain - 5000

us – 20000

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 23

www.srikanthtechnologies.com

Triggers

Triggers are used to do the following:
 Perform validation

 Automate maintenance
 Apply rules concerning acceptable database administration activity in a granular fashion

Events that fire triggers:

 DML

 DDL
 Database Events like start up etc.
 INSTREAD OF
 Suspended statements

Transaction Participation:

 If a trigger raises an exception, that part of the transaction is rolled back.
 Any DML in trigger becomes part of main transaction
 You cannot issue commit or rollback from DML trigger. However, it is permitted, if you are using Autonomous

transaction for trigger.

CREATE OR REPLACE TRIGGER BEF_INS_EMP

BEFORE INSERT ON EMPLOYEES

FOR EACH ROW

DECLARE

 PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN

END;

When a trigger is created with ERRORS then related DML operations fail.

create or replace trigger error_trigger

before update on jobs

for each row

begin

 v:= 10;

end;

update jobs set min_salary = min_salary where job_id = 'IT_PROG';

SQL Error: ORA-04098: trigger 'HR.ERROR_TRIGGER' is invalid and failed re-validation

04098. 00000 - "trigger '%s.%s' is invalid and failed re-validation"

WHEN clause
 Enclose the entire logical expression in side parentheses

 Do not include : in front of OLD and NEW names
 You can invoke built in functions only.
 You cannot invoke user-defined functions or function defined in built-in packages (DBMS_UTILITY etc.)
 WHEN can be used with only row-level triggers

NEW and OLD
 Both contain ROWID pseudo-column; The value is populated in both OLD and NEW with the same value in all

circumstances.
 You cannot change values of OLD, but you can change values of NEW.

 NEW records can be changed only in BEFORE ROW triggers.
 You can use - REFERENCING OLD as old_emp NEW as new_emp - to rename OLD and NEW.

Points
 DELETING, INSERTING, UPDATING are used to determine the current operation
 In UPDATING („sal‟) if column SAL is not present in the table then it returns false.

 A trigger can following another trigger for the same event using FOLLOWS option. This is shown as reference
dependency in USER_DEPENDENCIES view.

 ROW level triggers cannot read or write the table from which it has been fired.
 Statement level triggers are free to read and write.

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 24

www.srikanthtechnologies.com

 Order for COMPOUND trigger is BEFORE STATEMENT, BEFORE EACH ROW, AFTER EACH ROW, AFTER
STATEMENT.

 COMPOUND trigger can be used in FOLLOWS
 When a DML operation is completed all variables in COMPUND trigger are reset. This happens, even if there is

any exception.

DDL Triggers
 You can define trigger that fire when DDL statements are executed.
 Example DDLs are CREATE TABLE, ALTER INDEX, DROP TRIGGER etc.
 USER_SOURCE data dictionary view does not get updated until after both BEFORE and AFTER DDL triggers are

fired.

 If you define trigger on DDL (which matches all DDL statements) then you can use ORA_SYSEVENT to find out
which event actually fired trigger.

 ORA_IS_ALTER_COLUMN function can be used to know which columns are being updated. Ex:
ORA_IS_ALTER_COLUMN(„salary‟)

 ORA_IS_DROP_COLUMN and ORA_IS_ALTER_COLUMN are unaware of which table is being used.

CREATE OR REPLACE TRIGGER trigger_name

{BEFORE | AFTER }

{DDL Event}

ON {DATABASE | SCHEMA}

[WHEN (…)]

DECLARE

..

BEGIN

 ..

END;

create or replace trigger alter_tab_trigger

after alter on schema

begin

 dbms_output.put_line('Altering the object :' || ORA_DICT_OBJ_NAME);

end;

alter table logtable modify (entry varchar2(250));

set serveroutput on

begin

 null;

end;

Note: In order to see the output of DBMS_OUTPUT used in DDL trigger, you must complete a PL/SQL block
successfully.

Available attributes inside the body of the trigger:

Attribute Function What it returns

ORA_DICT_OBJ_NAME Name of the object affected by the firing DDL

ORA_DICT_OBJ_OWNER Owner of the object

ORA_DICT_OBJ_TYPE Type of the object affected by the firing DDL

ORA_LOGIN_USER User

Some attributes return DBMS_STANDARD.ORA_NAME_LIST_T type, which is declared as follows:

TYPE ora_name_list_t IS TABLE OF VARCHAR2(64);

Instead of triggers
WITH CHCEK OPTION is bypassed when updations are made from INSTEAD-OF trigger.

create or replace view cheap_employees

as

select * from employees

where salary < 5000

with check option;

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 25

www.srikanthtechnologies.com

// not allowed as it violates condition

update cheap_employees

 set salary = 6000

 where employee_id = 199;

create or replace trigger is_cheap_employees_update

instead of update

on cheap_employees

for each row

begin

 update employees set salary = :new.salary

 where employee_id = :new.employee_id;

end;

// allows as updation is done through INSTEAD-OF trigger
update cheap_employees

 set salary = 6000

 where employee_id = 115;

Database Event Triggers

 STARTUP
 SHUTDOWN

 SERVERERROR
 LOGON
 LOGOFF
 DB_ROLE_CHANGE

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER} {event} ON {DATABASE | SCHEMA}

DECLARE

BEGIN

END;

The following combination is not allowed:

 BEFORE STARTUP
 AFTER SHUTDOWN
 BEFORE LOGON
 AFTER LOGOFF
 BEFORE SERVERERROR

In order to create startup event triggers, users must have been granted the ADMINSTER DATABASE TRIGGER.

AFTER SERVERERROR trigger will not fire when an exception is raised inside this trigger.

The following functions provide information about exception raised.

Function What it returns

ORA_SERVER_ERROR Error number

ORA_IS_SERVERERROR Returns true if specified error number is in the current exception stack.

ORA_SERVER_ERROR_DEPTH Returns number of errors on the stack.

ORA_SERVER_ERROR_MSG Returns the full text of the error message at the specified position. It
returns NULL if no error is found at the position.

ORA_SERVER_ERROR_NUM_PARAMS Returns number of parameters associated with error message at the given
position.

ORA_SERVER_ERROR_PARAM Returns the value for the specified parameter position in the specified
error.

SERVERERROR triggers are automatically isolated in their own autonomous transaction.

create or replace trigger error_logger

after servererror

on schema

declare

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 26

www.srikanthtechnologies.com

begin

 dbms_output.put_line('Errors :');

 dbms_output.put_line('========');

 for i in 1..ora_server_error_depth

 loop

 dbms_output.put_line(ORA_server_error_msg(i));

 end loop;

end;

set serveroutput on

begin

 dbms_output.put_line(to_date('31/31/2013'));

end;

 When INSTREAD OF trigger is used on nested table then you can use :PARENT record to access parent table‟s
details.

 It is possible to create a trigger in DISABLED mode using DISABLE option. It is to be enabled later to be fired.
 Trigger views (USER_TRIGGERS) in the data dictionary do not display whether or not a trigger is in a valid

state. This information is made available in USER_OBJECTS table.

Managing Code
Views that contains important information

USER_ARGUMENTS Parameters for procedures and functions.

USER_DEPENDECIES Dependencies to and from objects you own.

USER_ERRORS Current set of compilation errors for all stored objects. This is used by SHOW
ERRORS

USER_IDENTIFIERS Contains all identifiers in your code. Populated by PL/Scope.

USER_OBJECTS Objects owned by you

USER_OBJECT_SIZE Size of objects you own.

USER_PLSQL_OBJECT_SETTINGS Characteristics of a PL/SQL object that can be modified through ALTER and

SET DDL commands, such as the optimization level, debug settings, and more.

USER_PROCEDURESS Contains AUTHID and DETERMINISTIC details.

USER_SOURCE Source code

USER_STORED_SETTINGS PL/SQL Compiler flags.

USER_TRIGGERS
USER_TRIG_COLUMNS

Triggers you own and columns identified with the triggers.

USER_OBJECTS
OBJECT_NAME

OBJECT_TYPE - PACKAGE, FUNCTION, TRIGGER, PROCEDURE
STATUS - VALID, INVALID
LAST_DDL_TIME - Last time object was changed.

USER_SOURCE
NAME
TYPE - Type of the object – PROCEDURE, FUNCTION, TRIGGER etc.
LINE - Line number

TEXT - Text

USER_OBJECT_SIZE

SOURCE_SIZE - Size of source in bytes.
PARSED_SIZE - Size of parsed form of the object in bytes. This must be in memory when any object that
references this object is compiled.
CODE_SIZE -Code size in bytes. This must be in memory when object is executed.

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 27

www.srikanthtechnologies.com

USER_PLSQL_OBJECT_SETTINGS

PLSQL_OPTIMIZE_LEVEL -Optimization level used to compile object

PLSQL_CODE_TYPE - NATIVE or INTERPRETED
PLSQL_DEBUG - Whether or not object was compiled for debugging
PLSQL_WARNINGS - Compiler warning settings that were used to compile object

select name, plsql_optimize_level, plsql_code_type, plsql_debug, plsql_warnings

from user_plsql_object_settings;

ADD_JOB_HISTORY 2 INTERPRETED FALSE DISABLE:ALL

ALTER_TAB_TRIGGER 0 INTERPRETED TRUE DISABLE:ALL

AUTHOR_TYPE 2 INTERPRETED FALSE DISABLE:ALL

AUTHOR_TYPE 2 INTERPRETED FALSE DISABLE:ALL

CCTEST 2 INTERPRETED FALSE ENABLE:INFORMATIONAL,DISABLE:PERFORMANCE,ENABLE:SEVERE

/* The following query displays all functions and their return types */

select object_name, data_type

from user_arguments

where position = 0

/* Triggers that have UPDATE (columns) clause but do not have WHEN clause*/

select trigger_name

from user_triggers ut

where when_clause is null

and exists (select 1 from user_trigger_cols

 where trigger_name = ut.trigger_name)

alter session set plscope_settings = 'IDENTIFIERS:ALL';

select object_name , object_type from user_procedures

alter function gettotal compile;

select * from user_identifiers

where object_name = 'GETTOTAL' and type='VARIABLE' and usage = 'DECLARATION'

DEPENDENCY
 A dependency is a reference from a stored program to some database object outside the program.
 Server-based programs can have dependencies on tables, views, types , procedures, functions, sequences,

synonyms, object types, package specifications.

 Program units are not dependent on package bodies and type bodies.
 Oracle does not use a compiled version of a program if any of the objects on which it depends have changed

since it was compiled.
 Oracle 11g dependency tracking has increased from unit(table) to element (columns in table) within in the

unit.
 Oracle tracks package specification and package body separately.
 Body depends on specification, but specification will never depend on its body.

 When your privileges on other schema objects are revoked then all objects that use that foreign object are
also invalidated.

 When package body changes, dependents on package do not get invalidated.

/* list all objects that depend on EMPLOYEES table */

select name, type from user_dependencies

where referenced_name = 'EMPLOYEES'

execute deptree_fill('TABLE',user,'EMPLOYEES');

select * from ideptree; /* shows recursively “referenced-by” query */

 Unless you use fully qualified variables in PLSQL inside your embedded SQL, when a new column to table is

added with the same name as PL/SQL variable, the object is marked invalid.

create table t2(n1 number(10), n2 number(10));

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 28

www.srikanthtechnologies.com

create or replace procedure t2_p1

is

 n3 number(5);

begin

 select count(*) into n3

 from t2;

 update t2 set n2 = n3;

end;

alter table t2 add (n4 number(5)); /* this marks T2_P1 as INVALID */

select object_name, status from user_objects

where object_name like '%T2%';

OBJECT_NAME STAUS

------------------- -------

T2_P1 INVALID

T2 VALID

However, if you qualify variable then adding a column to table does not invalidate the object.

create or replace procedure t2_p1

is

 n3 number(5);

begin

 select count(*) into n3

 from t2;

 update t2 set n2 = t2_p1.n3; -- qualifying object doesn‟t invalidate this object

end;

REMOTE DEPENDENCY
 When a procedure depends on remote object, local database doesn‟t attempt to invalidate the calling program

in real-time when remote object changes.
 Local database defers checking until runtime
 PLSQL stored two kinds of information about each referenced remote procedure – its timestamp and signature.
 Timestamp is most recent date and time (down to second) when an object specification was reconstructed, as

given by TIMESTAMP column in USER_OBJECTS view.
 For PLSQL program, TIMESTAMP is not necessarily the same as most recent compilation time because it is

possible to recompile an object without reconstructing its specification.

 Signature is object name, datatype family, and mode of each parameter.
 Database uses either timestamp or signature, depending on the current value of

REMOTE_DEPENDENCIES_MODE, which is set to TIMESTAMP by default
 Oracle recommends timestamp for server-to-server procedure call, and signature for client tools.
 Signature can cause false negatives – where runtime engine thinks that the signature hasn‟t changed, but it

really has. Examples :
o Changing only the default value of one of formal parameters.

o Adding an overloaded program to an existing package. The caller will not bind to new version,
even if it is supposed to.

o Changing the name of the formal parameter and caller using named parameter notation.
 TIMESTAMP is prone to false positives, is immune to false negatives.
 When a remote procedure is modified and then local caller is called, oracle raises ORA-04062 error as local

timestamp or signature (stored in local program) does not match remote procedure at runtime.

 If call to remote procedure is valid then on first call, local procedure is recompiled and if succeeds then its next

invocation should run without error.
 There is no direct way for PLSQL program to use any of the following package constructs on remote server :

o Variables
o Cursors
o Exceptions

Recompilation

 Automatic runtime recompilation - runtime engine will under many circumstances automatically recompile an
invalid program before unit is called.

 ALTER.. COMPILE Use ALTER command to recompile program unit.
 When a package is recompiled, other users using the package will get error as all session that started using

package before its recompilation are not out of sync with package.

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 29

www.srikanthtechnologies.com

ALTER PACKAGE pkg COMPILE BODY RESUE SETTINGS;

REUSE SETTINGS ensure all compilation settings (optimization level, warning level, etc) previously associated with

this program unit will remain the same.

Compile-Time Warnings
Three types of compile time warning:

Severe Conditions that could cause unexpected behavior or actual wrong results, such as aliasing
problems with parameters.

Performance Passing VARCHAR2 to NUMBER column in UPDATE statement.

Informational You might want to change to make code more maintainable.

ALTER SYSTEM SET PLSQL_WARNING = „ENABLE:ALL‟;

Possible values after ENABLE are: ALL, SEVERE, PERFORMANCE, INFORMATIONAL

You can also treat a warning as an error using ERROR :<warning number>. Example:

ALTER SYSTEM SET PLSQL_WARNING=‟ERROR:050005‟; -- converts PLW-050005 to error.

DBMS_WARNING was designed to be used in scripts, where for a single program you want to treat warnings as

errors etc.

If NOCOPY is not present for BODY and SPEC then Oracle applies whatever is found in SPEC. However it is a
warning as there is a mismatch between body and spec – PLW-05000.

PLW-05001: Previous Use of String conflicts with this use:

alter session set plsql_warnings='ENABLE:ALL';

create or replace procedure p3

is

 v1 number(5);

 v1 date;

begin

 DBMS_OUTPUT.put_line('Two variables with same name ');

end;

PLW-05003: Same Actual Parameter at IN and NOCOPY may have side effects:

create or replace procedure sp2

is

 v1 varchar(105) :='First';

begin

 dbms_output.put_line(v1);

 sp1(v1,v1,v1);

 dbms_output.put_line(v1);

end;

create or replace procedure sp1(p1 in varchar, p2 in out varchar, p3 in out nocopy varchar)

is

begin

 p2 := 'Second';

 p3 := 'Third';

end;

execute sp2

First

Second

PLW-05004: Identifier string is also declared in STANDARD or is a built-in

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 30

www.srikanthtechnologies.com

create or replace procedure sp1

is

 integer number(5);

begin

 integer := 10;

end;

 PLW:05005: Function string returns without value at line string
 PLW:06002: Unreachable Code
 PLW:07203: Parameter „string‟ may benefit from use of NOCOPY compiler hint

 PLW:07204: Conversion away from column type may result in suboptimal query plan.
 PLW:06009: Procedure „string‟ OTHERS handler does not end in RAISE or RAISE_APPLICATION_ERROR.

Wrapping PL/SQL Code

 A wrapped program is treated within the database just like a normal PL/SQL programs are treated.
 They cannot be seen in USER_SOURCE data dictionary view

 Wrapping makes reverse engineering of your code difficult.
 You cannot wrap the source code in triggers
 Wrapped code cannot be compiled into database of a version lower than that of wrap program.

 You cannot use SQL*PLUS substitution variables inside code that must be wrapped.
 You can wrap only package specification and bodies, object type specifications and bodies, and standalone

functions and procedures.
 A program that is wrapped contains WRAPPED in its header.

 Wrapped code is much larger than the original source. The size of compiled code stays the same, although the
time it takes to compile may increase.

WRAP executable
Program wrap.exe is placed in BIN directory.

WRAP iname=infile [oname=outfile]

 Default extension for infile is .sql

 If outfile is not given then it is taken as infile.plb, which stands for PL/SQL Binary.

DBMS_DDL.WRAP

Returns a string version of obfuscated version of your code.

DBMS_DDL.CREATE_WRAPPED

Compiles an obfuscated version of your code into the database.

declare

 lines dbms_sql.varchar2s;

begin

 lines(1) := 'create or replace procedure testobfus is begin dbms_output.put_line(100); end;';

 sys.dbms_ddl.create_wrapped(lines, lines.first, lines.last);

 dbms_output.put_line(

 sys.dbms_ddl.wrap('create or replace procedure testobfuscate is begin null; end;'));

end;

select * from user_source

where name = 'TESTOBFUS';

OPTIMIZATION

Optimization settings are defined through PLSQL_OPTIMZE_LEVEL init parameter, which can be set to 0,1,2,3 (3 is
only in 11g). The higher the number, the more aggressive is the optimization.

0 Turns off optimization.

1 Compiler will apply many optimizations to your code, such as eliminating unnecessary computations and
exceptions. It will not, in general, change the order of your original source code.

2 Default value. More aggressive than level 1. Some changes might result in moving source code relatively

far from original location. Compilation time may increase substantially.

3 Adds inlining of nested or local subprograms.

ALTER SESSION SET PLSQL_OPTIMIZE_LEVEL = 0;

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 31

www.srikanthtechnologies.com

ALTER PROCEDURE bigproc COMPILE PLSQL_OPTIMIZE_LEVEL=1;

ALTER PROCEDURE bigproce COMPILE REUSE SETTINGS;

All details are stored in USER_PLSQL_OBJECT_SETTINGS view.

Data Caching
 SGA caches the following information:

o Parsed cursor
o Data queried by cursors from database
o Partially compiled representations of our programs

 SGA does not change program data.
 PGA is used to stored data related to program. It is specific to each connection.
 PLSQL programs can retrieve information more quickly from the PGA than it can from SGA.

Package-based caching
 Data related to package is cached for each session.
 The values stay in memory until your recompile your package, assign new values to variable, or disconnect

Deterministic Function Caching
 A function is considered to be deterministic if it returns the same result value whenever it is called with the

same values for its IN and IN OUT arguments.

 The function has no side effects.

 Oracle can build a cache from the function‟s input and outputs.
 Declare a function as deterministic using DETERMINISTIC option after return type. Ex: RETURN VARCHAR2

DETERMINISTIC
 This cache is used only when function is called from SQL.
 This kind of cache is not used when function is called from PLSQL code.

RESULT CACHE
 Oracle stores both inputs and the return value in a separate cache for each function.
 It is not duplicated for each session.
 When function is called and cache is available then function is NOT called and cache is returned.
 Whenever changes are made to tables that are identified as dependencies for the cache, the database

automatically invalidates the cache. Subsequent calls to the function will then repopulate the cache with
consistent data.

 Starting from Oracle 11g R2, oracle will now automatically determines on which tables your returned data is

dependent and correctly invalidate the cache when those tables contents change.

 If you rely on view then only view is to be listed and not base tables.
 Only function in schema and package can be associated with result cache.
 Cannot be used with PIPELINED function.
 Cannot be used if function has OUT or IN OUT parameters.
 Cannot be used any of the parameters are of type BLOB, CBLOB, NCLOB, REF CURSOR, collection, RRECORD,

object type.

 Cannot be used if return type is any of the following : BLOB, CLOB, NCLOB, REF CURSOR, OBJECT TYPE,
COLLECTION or Record that contains previously listed types.

 Cannot be used with function that have AUTHID CURRENT_USER.
 When checking to see if the function has been called previously with the same inputs, oracle considers NULL to

be equal to NULL.
 User making change will bypass and see his changes. Other users see the data in the cache until the change is

committed.

 When table on which it depends is marked invalid, and will need to be recompiled before it can be used.
 When function propagates an unhandled exception, the database will not cache the input values for that

execution.

RESULT CACHE [RELIES_ON (table or view …)]

Create or replace function f1 return varchar RESULT_CACHE …

Create or replace function f1 return varchar RESULT_CACHE RELIES ON(employees)…

Create or replace function f1 return varchar RESULT_CACHE RELIES ON(employees, jobs, depts)…

 A packaged function without RELIES_ON clause is needed in both spec and body.
 When RELIES_ON is used it may appear only in body and both use RESULT_CACHE.

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 32

www.srikanthtechnologies.com

 RESULT_CACHE_MAX_SIZE specifies the maximum amount of SGA memory that the function result cache can
use.

 Oracle uses LRU algorithm to age out of cache
 DBMS_RESULT_CACHE package provides methods to manage contents of cache.

 V$RESULT_CACHE_STATISTICS, V$RESULT_CACHE_MEMORY, V$RESULT_CACHE_OBJECTS, and

v$RESULT_CACHE_DEPENDENCY.

BULK Collect and FORALL

BULK COLLECT INTO collection_name [,collection_name]…

 You can use BULK collect from static SQL and dynamic SQL.

 You can use BULK collect in SELECT INTO, FETCH INTO and RETURNING INTO.
 Collection is populated starting from index 1 and inserts elements consecutively.
 You cannot use SELECT .. BULK COLLECT in FORALL
 BULK Collect doesn‟t raise NO_DATA_FOUND. Collection‟s count methods returns 0.
 LIMIT clause limits the number of rows fetched from bulk collect. But it can be used with FETCH and not with

SELECT.

declare

 type jobs_table is table of jobs%rowtype ;

 type title_table is table of jobs.job_title%type;

 titles title_table;

 jobs_tab jobs_table;

begin

 select job_title bulk collect into titles

 from jobs order by job_title;

 for i in titles.first .. titles.last

 loop

 dbms_output.put_line(titles(i));

 end loop;

 select * bulk collect into jobs_tab

 from jobs order by job_title

 ;

 for i in jobs_tab.first .. jobs_tab.last

 loop

 dbms_output.put_line(jobs_tab(i).job_id);

 end loop;

end;

FORALL
Tells PL/SQL runtime engine to bulk bind into the SQL Statement all the elements of one or more collections
before sending its statement to the SQL engine.

FORALL index IN

 [lower_bound..upper_bound |

 Indices of indexing_collection |

 VALUES of indexing_collection]

[SAVE EXCEPTIONS]

Sql_statement;

Indexing_collection
Is PL/SQL collection used to select the indices in the bind array referenced in sql_statement;
INDICES OF and VALUES_OF are available options.

SAVE EXCEPTIONS
Is an optional clause that tells FORALL to process all rows; saving any exceptions that occur.

RULES:
 The body of FORALL must be single DML statement.
 The scope of index variable is FORALL statement and you may not reference it outside that statement.
 You cannot refer to this index outside the statement.

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 33

www.srikanthtechnologies.com

 Sparsely filled collections will raise error.
 Collection subscript referenced in the DML statement cannot be an expression. Ex: names(idx+2)
 %BULK_ROWCOUNT use the same subscripts or row numbers in the collections.
 DML Statements that raised the exception is rolled back to and implicit savepoint marked by PLSQL engine

before execution of the statement. Changes to all rows already modified by that statement are rolled back.

 Any previous DML operations in that FORALL statement that already completed without error are NOT rolled
back.

 If no specific action is taken (by adding SAVE EXCEPTIONS) the entire FORALL statement stops and remaining
statements are not executed at all.

SQL%BULK_ROWCOUNT Returns number of rows processed by each corresponding SQL Statement.
SQL%BULK_EXCEPTIONS Returns a pseudo-collection that provides information about each exception raised

in FORALL statement that includes SAVE EXCEPTIONS clause. ERROR_INDEX
property returns row number and ERROR_CODE returns error.

declare

 type title_table is table of jobs.job_title%type

 index by pls_integer;

 type id_table is table of jobs.job_title%type

 index by pls_integer;

 titles title_table;

 ids id_table;

 newtitles title_table;

begin

 select job_id bulk collect into ids

 from jobs;

 forall indx in ids.first .. ids.last

 save exceptions

 update jobs

 set job_title = upper(job_title) || upper(job_title)

 where job_id = ids(indx) and length(job_title) > 15

 returning job_title bulk collect into newtitles;

exception

when others then

 for i in 1.. sql%bulk_exceptions.count

 loop

 dbms_output.put_line('Error for ' || to_char(sql%bulk_exceptions(i).error_index)

 || ' is ' || sqlerrm(-1 * sql%bulk_exceptions(i).error_code));

 end loop;

 /*

 for i in newtitles.first .. newtitles.last

 loop

 if sql%bulk_rowcount(i) <> 0 then

 dbms_output.put_line('Updated row at ' || to_char(i) || ' To ' || newtitles(i));

 end if;

 end loop;

 */

end;

INDICES OF Example:

declare

 type id_table is table of jobs.job_id%type index by pls_integer;

 type indx_table is table of boolean index by pls_integer;

 ids id_table;

 indxs indx_table;

begin

 indxs(1) := true;

 indxs(10) := true;

 ids(1) := 'IT_PROG';

 ids(10) := 'SA_MAN';

 forall i in INDICES OF indxs

 update jobs

 set job_title = upper(job_title)

 where job_id = ids(i);

end;

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 34

www.srikanthtechnologies.com

VALUES OF Example

declare

 type id_table is table of jobs.job_id%type

 index by pls_integer;

 type indx_table is table of pls_integer

 index by pls_integer;

 ids id_table;

 indxs indx_table;

begin

 indxs(1) := 1;

 indxs(2) := 10;

 ids(1) := 'IT_PROG';

 ids(10) := 'SA_MAN';

 forall i in VALUES OF indxs

 update jobs

 set job_title = upper(job_title)

 where job_id = ids(i);

end;

NOCOPY Parameter Mode Hint
 It requests that PL/SQL runtime to pass an IN OUT argument to be passed by reference rather than by value.

 By default IN is passed by reference and OUT and IN OUT are passed by value.
 Use NOCOPY after IN OUT or OUT
 The actual parameter for an OUT parameter under the NOCOPY hint is set to NULL whenever the subprogram

containing the OUT parameter is called.

 NOCOPY is a hint and may be ignored by runtime.
 You can request NOCOPY only for entire structure(array) and NOT for an element.
 Some constraints like scale specification for numeric variable and NOT nULL constraints will result in NOCOPY

being ignored.
 One or both records were declared using %ROWTYPE or %TYPE and the constraints on corresponding fields in

these two records are different.
 NOCOPY is ignored in external or remote procedure call.

 If a program terminates with unhandled exception, you cannot trust the values in a NOCOPY actual parameter.

DBMS_OUTPUT
 Each user session has a DBMS_OUTPUT buffer of predefined size, which is set to UNLIMITED.
 This buffer is emptied when outermost PL/SQL block terminates.

 SET SERVEROUTPUT ON [SIZE UNLIMITED] enables output
 DBMS_OUTPUT.ENABLE (buffer_size => null); sets buffer size to unlimited, otherwise buffer size is

expressed in bytes.
 PUT method doesn‟t flush buffer. You need to use NEW_LINE to flush buffer.
 Largest string you can pass is 32767 bytes.
 Numbers and Dates are converted to VARCHAR, but Boolean cannot be converted.
 GET_LINE (string, status) is used to read a line. Copies line into string and status (0 for success) into status.
 GET_LINES(DBMS_OUTPUT.CHARARR, NoOfLines); If COUNT of array is 0 then it is end of it.

declare

 line varchar2(100);

 status integer;

 line_count integer;

 lines dbms_output.chararr;

 procedure write is

 begin

 dbms_output.put_line('One');

 dbms_output.put_line('two');

 dbms_output.put_line('three');

 end;

begin

 write;

 /*

 -- read lines

 dbms_output.get_line(line,status);

 if status = 0 then

 dbms_output.put_line(' Read : ' || line);

 else

 dbms_output.put_line('No line');

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 35

www.srikanthtechnologies.com

 end if;

 */

 line_count := 10;

 dbms_output.get_lines(lines, line_count);

 for i in 1 .. line_count

 loop

 dbms_output.put_line(lines(i));

 end loop;

end;

UTL_FILE
 This package is available only in SYS account.
 Grant privilege to other accounts to use it.
 R for Read, W for WRITE, A for APPEND.

 Append mode expects file to exists otherwise raises INVALID_OPERATION.
 FOPEN(FOPEN(location, filename, open_mode, max_line_size) return UTL_FILE.filetype
 IS_OPEN(file) RETURN BOOLEAN
 FCLOSE(file) - raises WRITE_ERROR if buffered data is not written to file

 FCLOSE_ALL closes all files but doesn‟t mark file handles as closed so IS_OPEN with those handles still return
true.

 GET_LINE(file, buffer OUT)
 PUT (file,string)
 NEW_LINE
 PUT_LINE(file, string, autoflush) Default autoflush is false
 PUTF(file,format, args1, args2… args5); A maximum of 5 args.
 FFLUSH(file)
 FCOPY(src_location, src_file, dest_location, dest_filename, start_line, end_line)

 FREMOVE(location, file)
 FRENAME(src_location, src_filename,dest_location, dest_filename, overwrite);
 UTL_FILE.FGETATTR(location , filename , exists OUT BOOLEAN, file_length OUT NUMBER, blocksize OUT

NUMBER);

create or replace directory exam as 'c:\1z0-144';

declare

 fh sys.utl_file.file_type;

 line varchar2(100);

begin

 fh := sys.utl_file.fopen('EXAM', 'websites.txt','r'); -- EXAM name must be in upper

 loop

 sys.utl_file.get_line(fh,line,100);

 dbms_output.put_line(line);

 end loop;

Exception

 when no_data_found then

 sys.utl_file.fclose(fh);

end;

Write to file by taking data from JOBS table:

set serveroutput on

declare

 fh sys.utl_file.file_type;

begin

 fh := sys.utl_file.fopen('EXAM', 'jobs.txt','w'); -- EXAM name must be in upper

 for jobrec in (select * from hr.jobs)

 loop

 sys.utl_file.putf(fh,'Id : %s Title : %s\n', rpad(jobrec.job_id,10), jobrec.job_title);

 end loop;

 sys.utl_file.fclose(fh);

end;

Study Guide For 1Z0-144 by Srikanth Pragada Page No: 36

www.srikanthtechnologies.com

UTL_Mail
This package allows you to send mails.

1. Log into SYS account

2. Sql> start C:\oraclexe\app\oracle\product\11.2.0\server\rdbms\admin\utlmail.sql
3. Sql> start C:\oraclexe\app\oracle\product\11.2.0\server\rdbms\admin\prvtmail.plb
4. SQL> grant execute on utl_mail to public;
5. Log into HR
6. alter system set smtp_out_server= 'localhost'

begin

 Utl_mail.send(sender => 'webmaster@st.com', recipients => 'james@st.com',

 subject => 'Test', message => 'Mail from Oracle');

end;

You can send mail to multiple users using :

 Recipients => „abc@gmail.com‟, „xyz@yahoo.com‟

