11. USER-DEFINED FUNCTIONS

Functions are building blocks of a C program. In this chapter, we will understand what is a function, how to create and use functions. Understanding functions is one of the most important steps in C language.

· What is a function?

· Standard functions

· User-defined functions

· Passing parameters

· Returning value

· Function declaration and definition

· Recursion

· Summary

· Exercises

What is a function?

A function is a collection of instructions that performs a specific task. Every function is given a name. The name of the function is used to invoke (call) the function. A function may also take parameters (arguments). If a function takes parameters, parameters are to be passed within parentheses at the time of invoking function.

A function theoretically also returns a value, but you can ignore the return value of the function in C language.

Following are a few examples of using functions in C language. C is a function-oriented language. Many operations in C language are done through functions. For example, we have used printf() function to display values, scanf() function to read values from keyboard, strlen() function to get the length of the string etc.

Functions are of four types:

· Functions that take nothing and return nothing.

· Functions that take nothing but return a value.

· Functions that take something but return nothing.

· Functions that take something and return a value.

Here are a few examples of types of functions.

 /* passing a single value and ignoring the return value */

 printf("We are ignoring return value ");

 /* not passing any value but taking the return value of the function*/

 ch = getchar();

 /* passing the value and taking the return value */

 len = strlen(st);

As you can see, almost everything in C language is done through functions.

A function can be defined as A set of instructions meant to perform a task and return a value. A function returns one and only one value. A function may also take one or more values, but that is optional.

In C a function is also used as a procedure since C doesn't support procedures. The difference between a function and a procedure is, procedure doesn't return a value and function always returns a value.

Functions in C language are divided into standard functions and user-defined functions.

Standard functions

Every C compiler provides good number of functions. All that a programmer has to do is use them straight away. For example, if you have to find length of a string , use strlen() without having to write the required code.

A function which is made available to programmer by compiler is called as standard function or pre-defined function. The code for all standard functions is available in library files, like cs.lib, and graphics.lib. These library files are supplied by the vendor of compiler. Where these libraries are stored in the system depends on the compiler. For example, if you are using Turbo C, you find libraries in LIB directory under directory where Turbo C is installed.

Declarations about standard functions are available in header files such as stdio.h, and string.h.

We will discuss more about function declaration and function definition later in this chapter.

Turbo C provides around 400 functions covering various areas like Screen IO, graphics, disk IO etc.

Compiler dependent functions

Out of standard functions, some functions are compiler dependent. That means these function are not available in all compilers. For example, Turbo C comes with functions like clrscr(), and gotoxy(). But these functions will not be found on UNIX C compiler and instead some other functions doing similar task will be available.

ANSI C functions

Some functions such as printf(), isupper() etc. are ANSI C functions. That means these functions are to be made available by every C compiler. So, if you are planning to compile your C program with different compilers then you better stick to these functions only as these functions are standard.

User-defined functions

User-defined function is a function that is defined by user. That means, the code for the function is written by user (programmer). User-defined functions are similar to standard functions in the way you call. The only difference is instead of C language providing the function, programmer creates the function.

User-defined functions are used mainly for two purposes:

To avoid repetition of code

In programming you often come across the need to execute the same code in different places in the program. For example, assume you have to print an array at the beginning of the program and at the end of the program. Without a function you have to write the code to display the array twice (see figure 1).

If you create a function to display the array, then you have to call the function once at the beginning of the program and once at the end of the program. That means, the source code need not be written for multiple times. It is written only for once and called for multiple times (see figure 2).

In nutshell, a function created by user is called as user-defined function.

[image: image1.wmf]main()

{

 int ar[10];

 int i;

 for (i = 0 ; i <10; i ++)

 printf(“%d”, ar[i]);

 /* some other code */

 for (i = 0 ; i <10; i ++)

 printf(“%d”, ar[i]);

}

Repeated

 Code

Figure 1: Program without user-defined function

[image: image2.wmf]main()

{

 int ar[10];

 int i;

printarray(ar);

 /* some other code */

printarray(ar);

}

printarray(int ar[])

{

 int i;

 for (i = 0; i < 10 ; i++)

 printf(“%d”, ar[i]);

}

Figure 2: Program with user-defined function

To break large program into smaller units

It is never a good idea to have a single large code block. If you write entire C program as one block, the entire blocks ends up in main() function. It becomes very difficult to understand and manage.

If you can break a large code block into multiple smaller blocks, called functions, then it is much easier to manage the program. In the following example, instead of taking input, processing and displaying output in main() function, if you can divide it into three separate functions, it will be much easier to understand and manage.

[image: image3.wmf]main()

{

 /* take input here */

. . .

 /* process the input here */

. . .

 /* display output here */

 . . .

}

Figure 3: A single large main() function.

[image: image4.wmf]main()

{

 takeinput();

 process();

 displayoutput();

}

takeinput()

{

}

process ()

{

}

displayoutput()

{

}

Figure 4: main() function calling other functions

Creating user-defined function

A user-defined function is identical to main() function in creation. However, there are two differences between main function and a user-defined function.

· Name of main() function is standard, whereas a user-defined function can have any name.

· main() function is automatically called when you run the program, whereas a user-defined function is to be explicitly called.

The following is an example of a user-defined function. This is a very simple function to display the name of the person and company name.

/* main function */

main()

{

 /* call user-defined function */

 print();

}

/* user-defined function */

print()

{

 printf("P.Srikanth\n");

 printf("Srikanth Technologies");

}

Here is another user-defined function to draw a line.

 /* program to call a user-defined function called line
 to draw a line */

 main()

 {

 line (); /* call function line */

 printf("Srikanth Technologies");

 line (); /* call line function again */

 }

 /* user defined function line to draw a line across the screen */

 line()

 {

 int l;

 for (l = 1 ; l <= 79 ; l ++)

 putch('-');

 }

In main function we called line function. To call a function, use function name followed by parenthesis. If function takes any values then send values by giving them in parenthesis. In fact, there is nothing new about it. We have been doing it since our first C program. The only new thing is; we are writing code for function instead of calling prewritten code. We will see more about passing parameters later in this chapter.

As you see in figure 5, when main function calls line() function, control is transferred to line() function. After the code in line() function is executed, control returns to next statement following the statement that called the function.

[image: image5.wmf]main()

{

 line();

}

line()

{

. . .

}

Figure 5: Transfer of control when function is called.

Passing parameters

Though line function is useful, it always does the same thing. I mean, it always displays a line of 79 hyphens. But what if we want to have a line of only 30 characters and not 79 characters. It would be far more flexible and versatile if line function were to take length and draw line of that length.

For this line function is to be slightly modified to take a parameter and use that parameter. A parameter or argument is a value passed to function so that function can use that value while performing task. A function may take none , one or more parameters depending upon the need.

Here is the modified version of line function.

#include <conio.h>

main()

{

 /* call function line with different values */

 line (10);

 line (40);

 line (20);

}

/* len contains whatever value is passed to this function */

line(int len)

{

 int l;

 for (l = 0 ; l < len ; l ++) /* draw a line of len length */

 putch('-');

}

Whenever we call line function we have to pass a value in parentheses. The value passed is placed in variable declared in parentheses of function definition (int len). In the function, the passed value is referenced using parameter (len).

Actual Parameter

Is the value that is passed to function while calling the function.

For example, 10,40 and 20 values that we passed to line() function in the above program.

Formal Parameter

Variable that is used to receive actual parameter. In the above program len in function line().

Passing array as parameter

When an array is passed as parameter, only the name of the array is given at the time of calling function. The formal parameter is to be declared as an array. Here is an example to print the given array.

printarray(int ar[10])

{

 int i;

 for (i = 0 ; i < 10 ; i ++)

 printf(“%5d”, ar[i]);

}

main()

{

 int a[10];

 printarray(a);

}

Returning Value

Normally after performing the task functions return a value. The return value may be of any type. But a function can return only one value. To return a value from the function, we have to first specify what type of value the function returns and then we have to use return statement in the code of the function to return the value.

When return type is not explicitly mentioned it defaults to int. If a function doesn't return any value then specify return type as void.

The following program illustrates it.

 /* declaration of the function */

 int getsum(int n);

 main()

 {

 int v, sum;

 printf("Enter a number : ");

 scanf("%d", &v);

 /* call function getsum() to get sum of numbers from 1 to v */

 sum = getsum(v);

 printf(" Sum = %d ", sum);

 }

 /* function definition or body */

 int getsum(int n)

 {

 int s = 0;

 for (; n > 0; n --)

 s += n;

 /* return the value of s as return value of function */

 return s;

 }

In the above example, function getsum() takes a single integer and returns the sum of all numbers from 1 to the given number. The function has specified that it intends to return an integer and returned the value using return statement. We will understand more about function declaration and function definition in the next section.

Function declaration and definition

A function may contain declaration and definition. Function declaration specifies function name, return type, and type of parameters. This is normally given at the beginning of the program. Though it is not mandatory in all cases , it is better to declare each function. In fact header files(*.h) contain declarations of all standard functions.

The following is the syntax for function declaration.

 return-type functionname (parameters);

Function declaration is called as Prototype declaration . Though it is not necessary in majority of cases, it is needed in cases where the following conditions apply:

· Call to function comes before definition of the function

· Function returns non-integer value.

The following is an example where these two conditions are satisfied.

/*function without prototype declaration */

/*This results in compile time error */

main()

{

 int a[10];

 float avg;

 /* get values into array */

 ...

 /* call function to get average of the array */

 /* compiler doesn't know the return type.

 So it assumes it is an int */

 avg = getaverage(a);
}

float getaverage(int a[])
{

 float f;

 int i;

 for(i=0; i < 10 ; i++)

 f += a[i];

 return f / 10; /* return average */

}

Look at the above example. Here we have a function called getaverage(), which takes an array of 10 integers and returns a float.

But as C compiler encounters call to function before definition of the function, C compiler assumes the return type as integer. But when compiler gets to function definition it understands that the function returns float. As the assumption of the compiler (function returning int) and the reality (function returning float) are not matching it returns an error Type mismatch in redeclaration of 'getaverage'.

The remedy to this is to declare the function before it is called using prototype declaration. This lets compiler know that function returns float type value and not int type (default type) and that will solve the problem.

/*function with prototype declaration */

/* prototype declaration for getaverage() function */

float getaverage(int a[]);
main()

{

 int a[10];

 float avg;

 /* get values into array */

 ...

 /* call function to get average of the array */

 /* compiler already knows the return type.

 So it doesn't take it as int */

 avg = getaverage(a);
}

float getaverage(int a[])
{

 float f;

 int i;

 for(i=0; i < 10 ; i++)

 f += a[i];

 return f / 10; /* return average */

}

Note: It is always better you declare functions and then define them.

Function definition

Function definition is where the statements to be executed are given. When the function is called the statements given here are executed.

 return-type functionname (parameters)

 {

 statements;

 return value;

 }

Return type
specifies the type of value function returns. If function doesn’t return any value then it must be void.

Parameters
are formal parameters of the function.

Statements
are the statements to be executed when function is called.

Return
statement is used to return a value from function.

Recursion

When a function calls itself it is called as recursion. Recursion is natural way of writing certain functions. Though it sounds a bit intimidating in the beginning, once you get used to it, it becomes easy and natural.

The following program displays the given number in reverse order using function reverse(), which is recursively called. Every recursive function should have a way to terminate the function. That means, at one point it should stop calling itself. Otherwise, it becomes never ending recursion and program will be terminated with an error saying "out of stack space".

If you are wondering what stack has got to do with recursion then here is the connection. Whenever you call a function, certain information about the function, parameters and local variables are placed in a memory structure called stack. If you call a function several times (which will be the case with improperly written recursive function) then the stack may be filled and may stop the program. So that is the reason for stack overflow error.

/* program to display the given number in reverse */

main()

{

 int n;

 printf("Enter a number :");

 scanf("%d",&n);

 reverse(n);

}

reverse(int n)

{

 if(n == 0) return; /* stop calling it self */

 /* print last digit of the given number */

 printf("%d", n % 10);

 /* call function recursively by removing last digit */

 reverse(n /10);

}

If you find recursion difficult to understand, no need to panic. Because every function that is written using recursion can be written even without using recursion. However, in certain cases writing recursive version is easier than non-recursive version.

Summary

A function is a collection of statements to do a task. A function may or may not take parameters but it always returns a single value . Functions may be predefined or user-defined. User-defined functions are the ones that user created by writing the code. A user-defined function may contain function declaration, where information about function is supplied to compiler, and function definition, where code of the function is written. Function returns a value using return statement. When a function calls itself it is called as recursion.

Exercises

I. Fill in the blanks

1. A function can return _______ number of values.

2. _________ statement is used to terminate a function.

3. ______ is the default return type of function.

4. Out of function declaration and function definition which is optional ?__________

5. In which order function declaration and function definition should be given.

6. When a function calls itself it is called as ___________

7. What are the differences between a user-defined function and main() function.

Write functions.

1. Write a function that takes a number as parameter and returns the next odd number.

2. Write a function to take a string as parameter and display it in lowercase.

3. Write a function to take a number and return 1 if it is a prime number otherwise 0.

4. Write a function to take a string and return the number of digits the string contains.

5. Write a function to take a number and return factorial of the given number. Use recursion.

