 Page 14-14
Calling APIs 

Calling APIs 
Page 14-13

Chapter 14

Calling APIs

Contents

· What is an API?

· Why to call APIs from Visual Basic?

· How to call an API from Visual Basic?

· How to declare an API in Visual Basic?

· What are the data types used in API and their counterparts in Visual Basic?

· How to send a string to an API?

· How to use API Viewer to get Type declarations and API declarations?

· Sample application using APIs

· How to work with TabStrip control?

What is an API?

API (Application Program Interface) is a function in DLL (Dynamic link library). Windows operating system is based on a couple of DLLs, such as Kernel32, User32, and GDI32. These APIs form the core part of Windows operating system. A DLL is a collection of functions (APIs). DLL is loaded into memory when any of the function is referred by an application. And once  a DLL is loaded in to memory DLL remains in memory and functions in DLL are dynamically bound to applications.  That means when an application calls a function in a DLL, the code of the function is not inserted into application (if it is done, it is called as static linking) and instead at run time the code of function is made available to application from DLL.

Dynamic linking is especially very efficient in Windows operating system, as a collection of application can run at the same time and may also use the same set of functions. So instead of placing one copy of each function in each application, it is better to provide one copy of functions and let all applications dynamically bind to functions.

Why to call APIs from Visual Basic?

Well, APIs are functions in DLLs and these APIs are what applications use indirectly or directly to get the job done in Windows OS. For instance, to show a window (a form in Visual Basic), to resize a window or to add an item to list box Windows use APIs.  All that is fine. But why should a Visual Basic programmer worry about all this? Because you say, I add an item using AddItem method of List box and show a form using Show method and so on. Accepted. But that is not the entire programming.

There are tasks (as you will see later) that you cannot accomplish just with commands of Visual Basic. You need to go beyond Visual Basic and access these APIs to get the job done. As you can see in figure 15.1, in most of the cases a command in Visual Basic ends up calling one of the APIs. But in some cases you do not find any command in Visual Basic that does the job for you. In this case you need to call APIs for VB application.

[image: image1.png]Windows API

VB Commands

VB Applications





Figure 14.1: Calling API from Visual Basic application.

However, to call an API you need to know everything about API. First of all you should know whether there is any API that does the job that Visual Basic cannot do for you.  Then you must know the number of parameters, type of each parameter and the type of return value.  The following are the details you should have before you call an API.

· The name of API

· Details of Parameters such as number of parameters and type of each parameter

· The library (DLL) in which API is available

· What type of value the API returns?

How to call an API from Visual Basic?

In order to call an API from VB, you have to take two steps, they are :

· Declaring API using Declare Function or Declare Sub statement.

· Calling API just like how you call a Visual Basic function or procedure.

Declaring an API

The first thing that you have to do to call an API is declare it in your project. This is generally done in code module. However, it can be done in General/Declarations of any module.

Here is the complete syntax of Declare statement.

Declare {Function|Sub}  FunctionName  Lib  “LibraryName” [Alias   

        “Aliasname”]   (Argument list)  [As Returntype]

The following sections will explain how to use each part of the syntax.

Function or Sub

Specifies whether API returns a value or not. If API returns a value then it is to be declared as a Function otherwise as a Subroutine. (Sub)

FunctionName
This is the name that you want to use to call API in your program. This name may be different from the actual name of the API. In this case, you also have to specify Alias and give actual name as the alias.

Lib “LibraryName”

Specifies the name of the library (DLL) in which the declared API is existing.  This indicates to Visual Basic where to look for API. The library should be available for Visual Basic. If it is not a standard library such as Kernel32, User32 or GDI32 then it is better you specify the complete path.

Note: Suffix 32 for a library name denotes 32-bit library. If you are using 16-bit library, i.e. for windows 3.x then you just have to give Kernel and not Kernel32.

Alias “AliasName”
Specifies the actual name of API when FuctionName is different from actual name. This enables you to change the name of API in your program so that name is more easier to call or more meaningful.

Argument List

Specifies the list of arguments (also called as parameters). For each argument you have to specify how argument is passed – by value or by reference, the name of argument and type of argument.

An argument is passed either by value or by reference. When a value is passed by value, its value is passed to function and changes made to the argument that corresponds to the parameter will not effect the value passed. That means, for example,  if you pass variable X to a function by value then changes made by function  argument will not effect the value of variable X.  On the other hand, if an argument is passed by reference, the reference(address) of the variable is passed to function and as the result any changes made to argument in function will effect the value of variable that is passed to function.

Keyword ByVal is used to specify pass by value and ByRef is used to specify pass by reference.

Passing Strings

For strings, ByVal means convert a Visual Basic string to C string. It doesn’t mean that the string is passed by value. String is always passed by reference as its address is passed and not the value.

Also note, that when you pass a string, you have to create required amount of space in Visual Basic string before it is passed to an API. Because APIs use C string convention, which assumes that the string points the location that is allocated to it. 

Here is an example:

 ‘ declare a string of 255 locations

 Dim st as string * 255

 ‘ call API and pass string to it

 V = APIFunction(st) 

The above example can also be rewritten in this way:

‘ Declare a normal Visual Basic string

Dim st as string

St = space (255)    ‘ create space for 255 spaces 

V = APIFunction (st)

Data Types used in API calls

When we deal with APIs we deal with C data types. So we have to convert Visual Basic data types to C data types.  The following table lists out the C data types and corresponding Visual Basic data types.

C Data Type
Size
Visual Basic Data Type

BOOL
32
Boolean

BYTE
8
Byte

Char
8
String * 1

Double
64
Double

DWORD
32 
Long

Float
32
Single

HANDLE
32
Long

Int
32
Long

Long
32
Long

LPTSTR
32
No equivalent

LPCTSTR
32
No equivalent

Short
16
Integer

UINT
32
Long

ULONG
32
Long

USHORT
16
Integer

UCHAR
8
String * 1

WORD
16
Integer

Table 14.1: C data types and their equivalent data types in Visual Basic.

What is a Handle?

As long as you use Visual Basic command you live under cover. You do not know what is really happening outside Visual Basic. But the moment you decide to call an API, you need to understand what is happening under the hood. Handle is one of them. VB allows you to access object using object oriented syntax. But what’s really happening in Windows is concealed.

Every window is assigned and identified by a handle, which is a 32 bit number ( long integer). Windows OS identifies windows using handle. Remember each control, such as Text box, Command button, is also a window. These windows are called as control windows. So each control and form has a handle using which Windows OS identifies the controls and forms.

If you ever have to take the handle of a control or a form in Visual Basic, use hWnd property of the form or control. This property returns the handle of the form or control that is assigned by Windows OS.

Getting API declaration from WIN32API.TXT

When you want to get declarations of standard APIs, you can use WIN32API.TXT text file. It contains Visual Basic declarations for all standard APIs, constants, and Types.

Use program API Text View to load the text file and get required declarations. API Text Viewer is an Add-in. So it is to be first added to VBIDE.

You can run it using the following steps:

1. Select Add-Ins menu and choose Add-In Manager option.

2. Visual Basic displays Add-In Manager as shown in figure 14.2.

3. Double click on VB 6 API Viewer to load it into VBIDE.

4. Then click on Ok to close Add-In Manager window. This adds API Viewer to Add-Ins menu.

5. Now again select Add-Ins menu and select API Viewer option. 

6. API Viewer starts. It doesn’t display anything initially. See figure 14.3.

7. Select File-> Load Text File… option and select WIN32API.TXT file.

8. API Viewer displays all the function declarations form WIN32API.TXT as shown in figure 14.2.

[image: image2.png][Add-In Manager [x]
Avaiable AddIns Load Behavior B [

Fackage and Deployment wieard
VB 6 ActiveX Ct Inteace Wizard Cancel
B 6 ActiveX Doc Migtation Wizard —
VB 6 AddIn Taokar

Loaded

VB 6 Application Wizard
VB 6 Class Buider Uity
VB 6 Data Form Wizard
VB 6 Data Object Wizard
VB 6 Propety Page Wizard |
VB & Resource Edtar

Vo e
el .

Desciption
[APT declaraion viewer addin fr Visual Basic &

Load Behavior
¥ Loaded/Unkoaded

I Load on Startup
I™ CommandLine





Figure 14.2: Loading Visual Basic 6 API Viewer.

[image: image3.png]%: API Viewer - C:\Program
Fle Edt View Hep
API Type:

e |

Tpe the first Feu letters of the word you are looking for:

s\Microsoft

Avalable Items:

o | -
| Getwindow! u —
v

g

s

e

GetiwintetaFiosits
Selected Items:

| e
G
et

o7





Figure 14.3: API Viewer displaying WIN32API.TXT.

Sample Application 

We will develop an application to display information regarding the following in different tabs.

· Windows Operating system

· Processor and Memory

· Selected Disk

Each tab displays information regarding one of the above mentioned topics. We will use TabStrip control to displays multiple tabs. 

What is TabStrip Control?

TabStrip control is used to display multiple pages of information in one page by displaying one page at a time. Each page is called as a tab. Each tab is like a mini-form. Each tab contains a title. When user clicks on the title of the tab, the page that corresponds to the tab will be displayed. 

To load TabStrip control into project:

1. Select Project -> Components

2. In Components dialog box, check Microsoft Windows Common Controls 6.0.

3. Click on OK.

When a TabStrip control is placed on the form, it has only one tab. You need to create additional tabs, if you want, using the following procedure.

To create tabs in TabStrip control:

1. Invoke property pages of TabStrip control by selecting Properties option in Context menu.

2. Select Tabs tab in Property Pages.

3. Click on Insert Tab button to add a new tab. Repeat the process for each tab.

Note: TabStrip is not a container control. You have to use other containers such as Frame control to place controls on Tabs of TabStrip control.

We will understand more about TabStrip control, as we will proceed.

Designing User Interface

As I have already mentioned in this application user interface is consisting of TabStrip control with three different tabs. First we will create three tabs using the procedure explained above, and then change Caption property of first tab to  "Windows Information", second tab to "System Information" and third tab to "Disk Information".

See figure 14.4, 14.5 and 14.6 to know how these three tabs appear at runtime, what is the information displayed in each of these tabs and how controls are arranged.

[image: image4.png]Cal

\g API Demo

[Wido#s THaimaion | System nformation | Disk Information |
Widows latom  WaEE
Vewn [T

Windows Diectoyy |- WINDOWS

Temporay Path  [EXWNDOWSNTEMPY





Figure 14.4:Windows Information Tab.

[image: image5.png]Windows Information | SF16i TRfaimaiion | Disk Information |

Frocessor  [588

Free Memory (13526

Total Memory  [57583280

Curent User

Computer Name

Merory Utizaion

[Gicanth

[GRICANTH HOME

o0





Figure 14.5: System Information Tab.

[image: image6.png]Cal

19 API Demo.

Windows Informaton | System Information DK Tormaton |

Diive [ S c:[SRIKANTH) 7]

Sectars Per Cluster

Bytes per Sector

Free Clsters

Total Clusers

=3 Diive Type [Fired
72 Volumne Name  [SRIRANTH
it Volue Seiil [757386127
[F882  Fiesystem Type [FAT32





Figure 14.6: Disk Information tab displaying information regarding selected drive.

Follow the steps given below to create required controls:

Create a Frame and change the following properties

Name

Frames

Caption
"" (Null string)

Index

1 

Index property is used to create a control array. Control array concept explained in chapter 8. A control array is a collection of controls that have the same name but different values for Index property. For all controls in a control array there is only one event procedure for each event. 

Place second frame and change the following properties.

Name 

Frames

Index

2

Caption
"" (Null string)

Place one more frame (third frame) and change the following properties.

Name 

Frames

Index

3

Caption
"" (Null string)

Adding Control to Frames

After frames are added, place required controls on each frame. See figure 17.4, 17.5 and 17.6 for layout of the controls. Most of the controls are Labels. We set BorderStyle property to 1-Fixed Single for labels that display the values. 

However, in third frame (Disk information), we have to place a DriveListbox control, which allows user to select the drive for which the user wants to get details.

Adding a module to contain API declarations

Generally we place all API declarations in a code module. Now we add a code module to the project using Project -> Add Module.

Add the Type declarations shown in table 14.2 using API Viewer.   

To get the Type declaration from API Viewer, do the following:

1. Load Win32Api.txt using File-> Load Text File…

2. Select Types in API Types dropdown list box.

3. Select one type at a time and click on Add button to add the Type declaration to Selected Items.

4. Repeat the process until all types listed in table 14.2 are added.

At the end of the above process all three Type declarations should be copied to General/Declarations of the code module, as shown in listing 14.1.

Here is the list of Types taken from API Viewer and what they contain.

Type
Meaning

MEMORYSTATUS
Contains fields that return the information regarding total physical memory, available memory etc.

SYSTEM_INFO
Contains fields that return information regarding number of processors, type of processor etc.

OSVERSIONINFO
Contains fields that return information regarding platform id, major and minor version etc.

Table 14.2: Type declarations required for sample application.

Add API declarations for the APIs listed in table 14.3 using API Viewer. 

To add API declarations, do the following:

1. Select Declares in API Type dropdown list box.

2. Select each function listed in table 14.3 and click on Add button to send its declaration to Selected Items.

To transfer selected items to code module in Visual Basic project:

1. Once all Types and Declarations are copied to Selected Items, click on Copy button to copy selected items to clipboard.

2. Then activate code module in Visual Basic project and select General/Declarations. 

3. Choose Edit->Paste in VB IDE to paste Type declarations and API declarations that are copied into clipboard, into code module.

Public Type MEMORYSTATUS

        dwLength As Long

        dwMemoryLoad As Long

        dwTotalPhys As Long

        dwAvailPhys As Long

        dwTotalPageFile As Long

        dwAvailPageFile As Long

        dwTotalVirtual As Long

        dwAvailVirtual As Long

End Type

Public Type SYSTEM_INFO

        dwOemID As Long

        dwPageSize As Long

        lpMinimumApplicationAddress As Long

        lpMaximumApplicationAddress As Long

        dwActiveProcessorMask As Long

        dwNumberOrfProcessors As Long

        dwProcessorType As Long

        dwAllocationGranularity As Long

        dwReserved As Long

End Type

Public Type OSVERSIONINFO

        dwOSVersionInfoSize As Long

        dwMajorVersion As Long

        dwMinorVersion As Long

        dwBuildNumber As Long

        dwPlatformId As Long

        szCSDVersion As String * 128 'Maintenance string for PSS usage

End Type

Public Declare Function GetWindowsDirectory Lib "kernel32" Alias   "GetWindowsDirectoryA" (ByVal lpBuffer As String, ByVal nSize As Long) As Long

Public Declare Function GetTempPath Lib "kernel32" Alias "GetTempPathA" (ByVal nBufferLength As Long, ByVal lpBuffer As String) As Long

Public Declare Sub GetSystemInfo Lib "kernel32" (lpSystemInfo As SYSTEM_INFO)

Public Declare Function GetUserName Lib "advapi32.dll" Alias "GetUserNameA" (ByVal lpBuffer As String, nSize As Long) As Long

Public Declare Function GetComputerName Lib "kernel32" Alias "GetComputerNameA" (ByVal lpBuffer As String, nSize As Long) As Long

Public Declare Function GetDiskFreeSpace Lib "kernel32" Alias "GetDiskFreeSpaceA" (ByVal lpRootPathName As String, lpSectorsPerCluster As Long, lpBytesPerSector As Long, lpNumberOfFreeClusters As Long, lpTotalNumberOfClusters As Long) As Long

Public Declare Function GetVersionEx Lib "kernel32" Alias "GetVersionExA" (lpVersionInformation As OSVERSIONINFO) As Long

Public Declare Function GetVolumeInformation Lib "kernel32" Alias "GetVolumeInformationA" (ByVal lpRootPathName As String, ByVal lpVolumeNameBuffer As String, ByVal nVolumeNameSize As Long, lpVolumeSerialNumber As Long, lpMaximumComponentLength As Long, lpFileSystemFlags As Long, ByVal lpFileSystemNameBuffer As String, ByVal nFileSystemNameSize As Long) As Long

Public Declare Sub GlobalMemoryStatus Lib "kernel32" (lpBuffer As MEMORYSTATUS)

Public Declare Function GetDriveType Lib "kernel32" Alias "GetDriveTypeA" (ByVal nDrive As String) As Long

Listing 14.1: Type declarations and API declarations.

Here is the list of functions used in the sample application and what they do?

API
Meaning

GetWindowsDirectory
Returns the name of the directory into which Windows OS is installed.

GetTempPath
Returns path for temporary directory (temp).

GetSystemInfo
Returns information regarding system into a variable of SYSTEM_INFO type.

GetUserName
Returns the name of the current user.

GetComputerName
Returns the name of the computer.

GetDiskFreeSpace
Returns the space details of the given disk. 

GetVersionEx
Returns details regarding windows version into a variable of type OSVERSIONINFO.

GetVolumeInformation
Returns the details of the specified volume.

GlobalMemoryStatus
Returns memory statistics into a variable of type MEMORYSTATUS.

GetDriveType
Returns the type of the specified drive.

Table 14.3: APIs used in the sample application.

Writing code to get required information

Write three user-defined functions, GetSystemInformation, GetDiskInformation, and GetWindowsInformation.  These user-defined functions call APIs and get the required information. These functions also populate corresponding labels with the required information. Listing 14.2 shows the code for these three user-defined functions.

Public Sub GetWindowsInformation()

Dim winfo   As OSVERSIONINFO

Dim wdir As String * 255

Dim wlen As Long

 ' get windows platform

 wlen = GetWindowsDirectory(wdir, 255)

 lblwindir.Caption = Left(wdir, wlen)

 wlen = GetTempPath(255, wdir)

 ' get

 lbltemppath.Caption = Left(wdir, wlen)

 winfo.dwOSVersionInfoSize = Len(winfo)

 wlen = GetVersionEx(winfo)

  With winfo

    If .dwPlatformId = 0 Then

          lblwinplatform.Caption = "Windows 3.X"

    ElseIf .dwPlatformId = 1 Then

          lblwinplatform.Caption = "Windows 95"

    ElseIf .dwPlatformId = 2 Then

          lblwinplatform.Caption = "Windows NT"

    Else

          lblwinplatform.Caption = "Unknown"

    End If

    lblversion.Caption = .dwMajorVersion & "." & .dwMinorVersion

 End With

End Sub

Public Sub GetSystemInformation()

Dim sinfo As SYSTEM_INFO

Dim minfo As MEMORYSTATUS

Dim slen  As Long

Dim cname As String * 100

Dim rcode As Long

  ' call API to get information

  GetSystemInfo sinfo

  With sinfo

     lblprocessor.Caption = .dwProcessorType

  End With

  ' get memory information

  minfo.dwLength = Len(minfo)

  GlobalMemoryStatus minfo

  With minfo

     lbltotalmemory.Caption = .dwTotalPhys

     lblfreememory.Caption = .dwAvailPhys

     lblutilization.Caption = .dwMemoryLoad

  End With

  ' get computer name

  slen = 100

  rcode = GetComputerName(cname, slen)

  lblcomputername.Caption = Left(cname, slen)

  ' get current user name

  slen = 100

  rcode = GetUserName(cname, slen)

  lblcuruser.Caption = Left(cname, slen)

End Sub

Private Sub Drive1_Change()

  GetDiskInformation Left(Drive1.drive, 1) & ":\"

End Sub

Private Sub Form_Load()

   x = TabStrip1.Left + 40

   Y = TabStrip1.Top + 300

   For i = 1 To 3

      frames(i).Visible = False

      frames(i).Move x, Y, TabStrip1.Width, TabStrip1.Height - 300

   Next

   frames(1).Visible = True

   ' get the information 

   GetWindowsInformation

   GetSystemInformation

   ' get current drives information

   GetDiskInformation Left(CurDir, 3)

End Sub

Private Sub TabStrip1_Click()

   ' make all frames invisible

   For i = 1 To 3

     frames(i).Visible = False

   Next

   ' make the selected frame visible

   frames(TabStrip1.SelectedItem.Index).Visible = True

End Sub

Public Sub GetDiskInformation(drive As String)

Dim vname As String * 100

Dim vserial As Long

Dim mcl As Long

Dim vfsys As Long

Dim vfsysname As String * 100

Dim x As Long

Dim dtype As Long

Dim dt As String

  ' get volume information

   x = GetVolumeInformation(drive, vname, 100, vserial, mcl, _

   




vfsys, vfsysname, 100)

   lblvolume.Caption = vname

   lblserial.Caption = vserial

   lblFilesystem.Caption = vfsysname

   ' get disk information

   x = GetDiskFreeSpace(drive, nspc, bps, fc, tnc)

   lblsectors.Caption = nspc

   lblbytespersector.Caption = bps

   lblfreeclusters.Caption = fc

   lblclusters.Caption = tnc

   ' get drive type

   dtype = GetDriveType(drive)

   Select Case dtype

      Case 0

            dt = "Unknown"

      Case 1

            dt = "Not Available"

      Case 2

            dt = "Removable"

      Case 3

            dt = "Fixed"

      Case 4

            dt = "Remote"

      Case 5

           dt = "CDROM"

      Case 6

           dt = "RAM Disk"

   End Select

   lbldrivetype.Caption = dt

 End Sub

Listing 14.2: Code for Sample application.

When you run the project, you will see the first tab (Windows Information) as we have shown that in Load event of the form. Whenever user clicks on any other tab, Click event of TabStrip control occurs. We take Index of the selected item tab and use that index to display the frame that has the same index. See the code for Click event of TabStrip1 (see listing 14.1) for complete code.

Whenever user selects a different drive letter in DriveListBox of Disk Information tab, we invoke GetDiskInformation by sending the name of the selected drive.

The ability to call an API from Visual Basic application is a very important facility. In several cases you find that what you want, cannot be done in Visual Basic and you need to call an API. What we have seen in our sample application is a tiny list of APIs. There are thousands of APIs. Try to understand as many APIs as possible. Because, using APIs you can push limits.

Exercises
1. What is the use of ByVal keyword when used with Strings?

2. What is Visual Basics equivalent of DWORD data type?

3. Why should a string passed to an API from Visual Basic be initialized to the required space?

4. Which member of SYSTEM_INFO returns the type of microprocessor? And what is it if microprocessor is Pentium?

