Page 24-16
Classes and Collections

Classes and Collections
Page 24-15

Chapter 24

Classes and Collections

Contents

· What is Object Oriented Programming?

· What is a Class module?

· How to create properties, methods and events of a class module?

· Creating a sample class - Account class

· What is a Collection?

· How to use a Collection?

In this chapter, we will look first at object oriented programming. Once we get an idea about what is OOP (object oriented programming) then we will build a class and understand how to create and use objects of the class.

Collection is an object that can contain a collection of values. Unlike an array, the values in a collection may be of different types. It is also easy to add an item and delete an item from collection.

Visual Basic doesn't belong to the category of object oriented programming languages. However, Visual Basic is an object-based language. That means many things in Visual Basic are objects. For instance, the very "form" that you display to interact with user is an object. Each control is an object. And of course we have system objects, such as Printer and Screen. So, Visual Basic has got a lot of objects, but it doesn't yet provide all the features that a true OOPL should provide.

What is Object Oriented Programming?

Our aim is to get an idea about OOP so that we could understand how objects are implemented in Visual Basic.

OOP is a paradigm in which a program is essentially a collection of objects. Each object represents an important entity of the application. For example, in a payroll application an employee is an object. An OOP should support the following features.

Encapsulation

When the data and the code that accesses and manipulates the data are integrated, it is called as Encapsulation. The data of the object forms the attribute of the object. For instance, if object is an employee then employee number is an attribute. An object may also contain methods - the functions that take actions on the object. For instance, CalcSalary function of employee object is a method. When you call CalcSalary method, it accesses the data part of the object and calculates salary using the data of the object.

An object contains a set of attributes (called as properties in Visual Basic) and methods. Encapsulation binds the data and code together.

The advantage with encapsulation is; the data of the object is modified only by the code of the object. The data part of the object is not accessible from outside. It increases programmer's control on the object and as the result on the entire project.

Inheritance

Inheritance provides the crucial advantage of OOP - reusability. Inheritance allows the attributes and methods of an object to be inherited into another object. The object that is inheriting the attributes and methods of another object can further have its own attributes and methods, and can also override methods of the inherited object.

Inheritance allows programmer to use the object that he or someone else has already created and used in old and current projects in new projects. This reduces the time taken for developing new project. Reusability is a very important advantage of OOP. Microsoft's COM (Component Object Model) is based on the principle that once an object is created it can be reused in future. And there is a new paradigm called component software, which deals with creating components that can be reused anywhere. ActiveX controls, Java Beans are example for components.

For example, when you take a circle and an arc, the data of the circle is consisting of coordinates of the center point and the radius. The data of an arc object is containing whatever circle object has plus starting angle and ending angle. If circle is inherited into arc (in other words if arc is derived from circle) we do not have to concentrate on the attributes and methods that will be inherited from circle object, instead we have to concentrate on the new attributes and methods that are to be added to arc object.

Polymorphism

This allows one name to be used for multiple methods. That means you can use same name (Draw) for a method that draws a circle when used with circle and an arc when used with arc object. That means though we use the same name there will be multiple methods (functions). Each method is meant for a different object. This allows programmer to use the same name irrespective of the object. This reduces the number of names the programmer has to remember by providing the same interface (way of doing the job) for different objects. In simple words we use the same interface (name or symbol) though the data on which we perform the operation is different.

What is a Class Module?

Class module in Visual Basic was introduced for the first time in Visual Basic 4.0. Since then it has been widely accepted by Visual Basic programmers. As a matter of fact, class module forms the base for ActiveX servers. Class module is used to create a class. Once a class is created you can instantiate (create an instance) objects of the class. Class module forms the base for object oriented programming in Visual Basic.

Class, Object, Attribute and Method

In OOP, we deal with classes, objects, attributes and methods. It is important to understand this terminology.

Here is a brief description of all the terms.

Class

is the description of a collection of identical object. Ex: Account.

Object

is an instance of the class. Ex: A single account in a bank.

Attribute
is a data element of the class. Ex: Account number of an account class

Method
is a function that is part of the class. Ex: Deposit of account class

Let us elaborate the discussion of the terms. Each object is an instance of the class. For example, if an account in a bank is an object then it is an instance or occurrence of a class called "Account". All accounts in the bank are objects of the class account. In the same way if you have an apple and a mango then they are two objects of the class Fruit. So a class describes the attributes and methods that are common to a collection of identical objects. Just like how an account class describes what is common among all accounts in a bank.

Each class describes the attributes and methods. Attributes form the data part of the class. For example, in Account class; account number, current balance, type of account etc. are attributes of the class. Methods are used to take actions. For example, in account class you have Deposit method, which processes deposit of amount into account. In the same way you may have CalcIneterst method, which calculates interest using the data that we have in the class.

That's all. That is what you are expected to understand before you start creating a class using class module.

Creating Account Class

Let us create a class module to create a class called Account. Account class contains the following attributes, methods and events.

Type
Name
Meaning

Properties
Ano
Account number

Ahname
Account holder’s name

Curbal
Current balance

AccountType
Type of the account. Which may be either C – current account, or S-Savings account.

Methods
Init
Initializes the attributes by taking values as parameters.

Deposit
Takes the amount that is being deposited and adds that amount to current balance.

Withdraw
Takes the amount that is being withdrawn as parameter and subtracts the amount from current balance. Checks whether minimum balance is maintained.

Event
InsfficientBalance
This event is fired by Withdraw method when the current balance is not sufficient to process withdrawal.

InvalidAcccountType
This event is fired when AccountType is neither S (Savings) nor C (Current).

Table 24.1: Members of Account class.

Curbal and AccountType will be implemented as properties. Curbal is a read-only property. You can retrieve its value but you cannot change its value. Current balance (Curbal) is changed only though methods. Ano and Ahname are private, i.e.; they are not accessible from outside the class. They are changed using Init method.

Deposit and Withdraw are two methods that are used to change current balance. When method Withdraw cannot perform the operation because of insufficient balance, it raises the event InsufficientBalance by passing current balance as the parameter of the event. An event is used to pass message to calling unit. Event may be fired to inform the calling unit about the occurrence of an important event in the object.

AccountType is implemented as a property. It can be accessed from anywhere and it can also be changed from anywhere. So we incorporate code to check whether the new account type is either C or S. If it is neither S nor C then we raise an event InvalidAccountType.

That is all about the class we want to create. Let us now proceed to create Account class.

Creating a class using class module

To create a class in Visual Basic, you have to create a class module. Each class module is a class in Visual Basic. Variables in class module constitute data of the class and procedures and function constitute code part of the class. Events of the class are used to inform the invoking program about various important events.

Following are the steps to create a class using class module:

1. Start a new project and select Standard Exe as the type of the project.

2. Visual Basic creates a new project with a single form (Form1).

3. Add a new class module to project using Project -> Add Class Module
4. When you are prompted to select one from the list of class module types, select Class Module and click on Open.

5. Invoke Properties window of class module and change Name property of the class module to Account.

6. In General/Declarations of class module declare the following variables.

' Make variable declaration compulsory

Option Explicit

' data part of the class

Private m_ano As Integer

Private m_ahname As String

Private m_curbal As Long

Private m_acctype As String

Listing 24.1: Declaring data members of class module

To create Init method:

1. When you are in class module Select Tools->Add Procedure.

2. Enter Init as the name of the procedure and click on Ok button.

3. Enter the following code for procedure.

Public Sub Init(ano As Integer, ahname As String, curbal As Long, acctype As String)

 'assign the values passed as parameters to variable of

 'the class

 m_ano = ano

 m_ahname = ahname

 m_curbal = curbal

 m_acctype = acctype

End Sub

Listing 24.2: Init procedure of Account class.

Method Init is used to take values for four attributes of the class and assign those values to corresponding attributes. Note that each attribute is represented by a private variable. All these private variables are accessible only within the class. They are accessed only through methods (procedures and functions) of the class. In this case, Init method is used to set attributes of the class to the required values.

To create Deposit method:

1. Select Tools->Add Procedure being in class module.

2. Enter Deposit as the name of the procedure and click on Ok.

3. Enter the following code.

Public Sub Deposit(amt As Long)

 ' add amount to current balance

 m_curbal = m_curbal + amt

End Sub

Listing 24.3: Deposit method of Account class.

Creating Properties for Account class

So far we have created two methods of Account class - Init and Deposit. Now let us concentrate on creating properties for Account class.

A property of the class is a name that represents an attribute of the class. But there is difference between exposing a variable by making a variable of the class public variable and creating a property to represent the attribute. When you make a variable public, it can be accessed from outside the class and manipulated and the class has no control on the value that is being stored in the variable. For example, first m_AccType is made public then, the code that is using m_AccType variable of the class can set it to any character. But the character stored in m_AccType should be either C or S and this condition cannot be checked if you are using a public variable. So we need a property for that and that property is used to access a variable of the class

When you represent an attribute using a property, the following happens:

· Property is used to access the variable indirectly.

· Whenever you store a value into property, Property Let procedure is invoked and that is used to store the value in the corresponding variable of the class.

· Whenever you retrieve the value of the property, Property Get procedure is invoked and that is used to return the value of the corresponding variable of the class.

So creating a property gives programmer a chance to check whether the value that is being stored is valid or not.

Creating AccountType property

Property AccountType is used to access and change the type of the account. In other words, it represents the m_AccType variable of the class. By hiding m_AccType variable and accessing AccountType propety, we gain control on the value that is being stored in m_AccType.

Here is the complete process related to creating AccountType property.

· We create a property called AccountType.

· Visual Basic creates two procedures: one is Property Let procedure and another one is Property Get procedure.

· Property Let procedure is invoked whenever AccountType property is assigned a value. It has parameter that contains the value being passed. We check whether this is a valid value. If it is valid we assign this value to m_AccType variable of the class, otherwise we raise InvalidAccountType event.

· Property Get function is invoked whenever the value of AccountType is taken. It returns the value of m_AccType as the return value. Whatever value you return from Property Get procedure that will be the value of the AccountType property.

Now let us create AccountType property for Account class.

To create AccountType property:

1. Select Tools -> Add Procedure being in Class module.

2. Enter AccountType as the name of the procedure and select Property radio button in Type group.

3. Visual Basic create two new procedures as follows:

Public Property Get AcountType() As Variant

End Property

Public Property Let AcountType(ByVal vNewValue As Variant)

End Property

In Property Let procedure the parameter vNewValue contains the value that is assigned to property by the invoking code. If value ‘S’ is assigned to AccountType then vNewValue contains ‘S’

Let us write code for each of the procedure as follows.

Public Property Get AcountType() As String

 ' return the value of m_acctype

 AccountType = m_acctype

End Property

Public Property Let AcountType(ByVal NewAccType As String)

 ' check whether value is valid

 If NewAccType = "S" Or NewAccType = "C" Then

 m_acctype = NewAccType

 Else

 ' raise event that is handled by calling module

 RaiseEvent InvalidAccountType

 End If

End Property

Listing 24.4: Code for AccountType property.

InvalidAccountType (that will be created later) is an event of Account class that is used to notify the calling module that an error has occurred while changing AccountType property. We also need one more event called InsufficientBalance, which is called from WithDraw method.

Creating Events

Creating events in the class module is done as follows:

1. Select Tools-> Add Procedure being in Class module.

2. Enter InvalidAccountType as the name of the event and select Event radio button in Type group.

3. Visual Basic places a single statement in General/Declarations section as shown in listing 24.5.

4. Repeat steps 1 to 3 and create InsufficientBalance event.

5. InsufficientBalance event has a parameter of Long type. So add that parameter to that event. See listing 24.5 for details.

Public Event InvalidAccountType()

Public Event InsufficientBalance(Amt As Long)

Listing 24.5: Events of the Account class.

RaiseEvent statement

RaiseEvent is used to fire events that are declared at module level of a class module.

RaiseEvent eventname [(argumentlist)]

Eventname is the name of the event that is to be raised.

Argumentlist is the list of argument that you want to pass to event. It is optional. It is used only when you have arguments for event.

Adding Withdraw method

Withdraw method takes the amount to be withdrawn and subtracts that amount from current balance. But if current balance is not sufficient then it raises InsufficientBalance event by passing the available current balance.

While checking whether balance is sufficient or not it takes minimum value into account. The minimum value is 500 for Savings account and 1000 for current account.

To create withdraw method:

1. Select Tools->Add Procedure being in Class module.

2. Enter WithDraw as the name of the procedure.

3. Enter the following code.

Public Sub WithDraw(amt As Long)

Dim mbal As Integer

 ' find out minimum balance

 If m_acctype = "C" Then

 mbal = 1000

 Else

 mbal = 500

 End If

 ' check whether amount is sufficient

 If m_curbal - mbal >= amt Then ' balance is sufficient

 m_curbal = m_curbal - amt

 Else

 ' raise event and pass m_curbal as parameter

 RaiseEvent InsufficientBalance(m_curbal)

 End If

End Sub

Listing 24.6: Code for Withdraw method.

Creating CurBal property

The last step is creating CurBal property. The special thing about this property is, it is read-only property.

The process is same as creating AccountType property. But as CurBal is a read-only property. So it cannot be modified, it can only return the current balance. That means it has only property get procedure and no property let procedure.

Note: A function that returns the current balance serves the same purpose as a read-only property, CurBal.

To create CurBal as a read-only property:

1. Select Tools->Add Procedure being in class module

2. Enter CurBal as the name and select Property radio button in Type group.

3. Click on Ok button

Visual Basic creates two procedures, one is Property Let and another one is Property Get.

4. Delete Property Let procedure from the class by selecting it in code window and then pressing delete key.

Public Property Get CurBal() As Long

 ' return current balance

 CurBal = m_curbal

End Property

Listing 24.7: CurBal property get procedure.

The following is the complete code of the Account class module.

General/Declarations

Option Explicit

' data part of the class

Private m_ano As Integer

Private m_ahname As String

Private m_curbal As Long

Private m_acctype As String

Public Event InvalidAccountType()

Public Event InsufficientBalance(amt As Long)

Public Sub Init(ano As Integer, ahname As String, CurBal As Long, acctype As String)

 'assign the values passed as parameters to variable of the class

 m_ano = ano

 m_ahname = ahname

 m_curbal = CurBal

 m_acctype = acctype

End Sub

Public Sub Deposit(amt As Long)

 ' add amount to current balance

 m_curbal = m_curbal + amt

End Sub

Public Property Get AcountType() As String

 ' return the value of m_acctype

 AccountType = m_acctype

End Property

Public Property Let AcountType(ByVal NewAccType As String)

 ' check whether value is valid

 If NewAccType = "S" Or NewAccType = "C" Then

 m_acctype = NewAccType

 Else

 RaiseEvent InvalidAccountType

 End If

End Property

Public Sub WithDraw(amt As Long)

Dim mbal As Integer

 ' find out minimum balance

 If m_acctype = "C" Then

 mbal = 1000

 Else

 mbal = 500

 End If

 ' check whether amount is sufficient

 If m_curbal - mbal >= amt Then ' balance is sufficient

 m_curbal = m_curbal - amt

 Else

 ' raise event and pass m_curbal as parameter

 RaiseEvent InsufficientBalance(m_curbal)

 End If

End Sub

Public Property Get CurBal() As Long

 ' return current balance

 CurBal = m_curbal

End Property

Listing 24.8: Complete code for Account class.

Using Account Class

We have so far concentrated on creating Account class. Let us now see how we can use Account class. We will develop a simple form (shown in figure 24.1) to demonstrate how to use Account class.

[image: image1.png]
Figure 24.1: Form to use Account class.

Start a new Standard Exe project and write the following code in General/Declarations section of the Form1.

Option Explicit

Dim WithEvents acc As Account

Listing 24.9: Declaring an object of Account class.

Option Explicit is to make variable declaration mandatory.

Acc is an object of Account class. That means Acc is an instance of the class Account. To use any class you must first declare objects for the class.

[image: image2.png]
Figure:24.2: Acc object added to the list of objects and its events are shown in Events drop down.

WithEvents keyword specifies that there are events associated with the objects. Only when WithEvents keyword is used at the time of declaring object you will be able to handle events that are raised by the object. When you declare an object with WithEvents option, Visual Basic includes the object as one of the objects in Code window. For instance now if you invoke code window and open the drop down list of objects on the left, you find acc as one of the objects (see figure 24.2).

An object is to be declared and then defined (created).

At the time of declaration, you specify the name of the object and the class to which the object belongs. To declare the object use the following format:

Dim object as class

Here, object is the name of the object and class is the name of the class.

After the object is declared it is to be created using New keyword. When object is created, memory is allocated to object and the Initialize event of the class is fired.

In our example application, use Load event of the form to create a new object and initialize its attributes using Init method of the class. Code is shown in listing 24.10 .

Private Sub Form_Load()

 'create new object of Account type

 Set acc = New Account

 'initialize data of the object

 acc.Init 1, "Srikanth", 20000, "C"

End Sub

Listing 24.10: Code to initialize account object - acc.

Add three command buttons to form to use methods and properties of the Account class. Change the properties of the command buttons as follows.

Control
Property
Value

Command1
Name
CmdDeposit

Caption
&Deposit

Command2
Name
CmdWithdraw

Caption
&WithDraw

Command3
Name
Cmdchangetype

Caption
&Change Account Type

Write the following code for three command buttons.

Private Sub cmdChangeType_Click()

Dim atype As String

 'Accept new account type

 atype = InputBox("Enter new account type", "Account Type")

 acc.AcountType = atype

End Sub

Private Sub cmdDeposit_Click()

Dim amt As Long

 ' take amount being deposited

 amt = InputBox("Enter deposit amount", "Deposit")

 acc.Deposit amt

 ' display new current balance

 MsgBox "Current Balance" & Str(acc.CurBal), , "Balance"

End Sub

Private Sub cmdwithdraw_Click()

Dim amt As Long

Dim pcurbal As Long

 'take amount being withdrawn

 amt = InputBox("Enter amount to withdraw", "WithDraw")

 'remember current balance before withdrawl

 pcurbal = acc.CurBal

 acc.WithDraw amt

 If acc.CurBal <> pcurbal Then

 'display new current balance

 MsgBox "Current Balance" & Str(acc.CurBal), , "Balance"

 End If

End Sub

Listing 24.11: Code for command buttons in the form.

For Withdraw and Change Account Type, there is a chance of making a mistake. For example, the current balance may not be sufficient to execute withdrawal. In the same way, the character entered for account type may not be “S” or “C”. In these cases class raises events. We have to handle those events in form module. Here is the code to handle events.

Private Sub acc_InsufficientBalance(amt As Long)

 MsgBox "Insufficient Balance to perform the requested operation", , "Error"

End Sub

Private Sub acc_InvalidAccountType()

 MsgBox "The value entered for Account type should be either S-Savings or C-current", , "Error"

End Sub

Listing 24.12: Code for events of the class object.

Well, Now you know how to create a class and use it in a form. The process is the same no matter how complex and how big a class is. You just have to concentrate on properties (Attributes), methods and events.

Note: The properties, methods and events of a class are called as the interface of the class.

Using a Collection

A collection is a collection of items, where items may be of different types. The item may be an object of class or any standard data type. To understand how to use collections, let us use create a sample application (shown in figure 24.3). The sample application creates a class to contain a collection of objects of Account class

[image: image3.png]
Figure 24.3: Sample application using a collection of Account objects.

To create sample application:

1. Start a new project using File-> New project and select Standard Exe as the type of the project.

2. And place controls as shown in figure 23.4.

3. Change the following properties of the controls.

Control
Property
Value

Frame1
Caption
Account Details

Label1
Caption
Ano

Autosize
True

Label2
Caption
Name

Autosize
True

Label3
Caption
Balance

Autosize
True

Label4
Caption
Type

Autosize
True

Text1
Name
Txtano

Text
""

Text2
Name
Txtahname

Text
""

Text3
Name
Txtcb

Text
""

Text1
Name
TxtType

Text
""

Command1
Name
CmdAdd

Caption
&Add

Command2
Name
CmdDelete

Caption
&Delete

Command3
Name
CmdSearch

Caption
&Search

Command4
Name
CmdList

Caption
&List

Command5
Name
Cmdquit

Caption
&Quit

List1
Name
LstAccounts

Form1
Caption
Collections's Demo

4. Declare a collection object in General/Declarations as follows.

Dim Accounts As New Collection

Write code for Add command button. When user clicks on Add button after entering data into text boxes, create an object of Account class and put data entered by user into that object and then add that object to collection using Add method. Account Number (Ano) will be the key for the item added to collection. Key of the item may be used to retrieve the item from the collection.

You can access an item of collection either by using index of the item or by using Key of the item. The key is specified at the time of adding an item as the second parameter for Add method of the collection. The key must be string type.

The syntax of Add method is:

Add item, key, before, after

The meaning of each parameter is as follows.

Parameter
Meaning

Item
The item to be added to the collection.

Key
The key of the item that is being added to the collection. The key should be a string.

Before
Specifies that the new item should be added to the collection before the specified item. Item is identified either by key or by index.

After
Specifies that the new item should be added to the collection after the specified item. Item is identified either by key or by index.

Note: If before and after are not given in Add method, the new item is added to the end of the collection.

Here is the complete code to add an account object to the collection.

Private Sub cmdAdd_Click()

 Dim acc As New Account

 ' place data into object

 acc.Init CInt(txtAno.Text), txtAhname.Text, txtCb.Text, txtType.Text

 'add object to collection with ANO as the key

 Accounts.Add acc, txtAno.Text

 ClearFields

End Sub

Listing 24.13: Code for Add button.

The code for ClearFields, which is used to empty text boxes in procedure is as follows:

Public Sub ClearFields()

 ' empty all text boxes

 txtAno.Text = ""

 txtAhname.Text = ""

 txtCb.Text = ""

 txtType.Text = ""

End Sub

Listing 24.14: Code for ClearFields procedure.

To list out the item in the collection, enter the following code for Click event of cmdList command button.

Private Sub cmdlist_Click()

Dim acc As Account

 ' clear all values from listbox

 lstAccounts.Clear

 ' populate listbox using values in the collection

 For Each acc In Accounts

 'concatenate all the values

 With acc

 gap = Space(5)

 st = Str(.Ano) & gap & .Ahname & gap

 st = st & Str(.CurBal) & gap & .AccountType

 lstAccounts.AddItem st

 End With

 Next

End Sub

Listing 24.15: Code for List command button.

Note: For Each ... loop is a special loop designed specifically for collections. For more details see chapter 17.

To delete an item, whose account number is entered in txtAno text box, enter the following code for cmdDelete command button.

Private Sub cmdDelete_Click()

 On Error GoTo errlbl

 ' delete the details of the account whose ANO is entered

 ' in txtAno textbox

 Accounts.Remove txtAno.Text

 Exit Sub

errlbl:

 MsgBox "Account Number is not Found"

End Sub

Listing 24:16: Code for Delete command button.

Remove method of the collection takes a single parameter, which is either index of the item to be removed or the key of the item. If it is a string, it is treated as the key. If it is of numeric type, it is treated as index of the item to be removed.

If the given key or index is not found in the collection, a runtime error occurs. So trap the error and display error message.

To get the details of an account, whose account number is entered in txtano text box, enter the following code:

Private Sub cmdSearch_Click()

Dim acc As Account

 On Error GoTo errlbl

 ' get details of the account whose ano is entered

 ' in txtAno textbox

 Set acc = Accounts.Item(txtAno.Text)

 With acc

 txtAno.Text = .Ano

 txtAhname.Text = .Ahname

 txtCb.Text = .CurBal

 txtType.Text = .AccountType

 End With

 Exit Sub

errlbl:

 MsgBox "Account Number not found"

End Sub

Listing 24:17: Code for Search button.

Item method results in runtime error if the given index is not found in the collection. So handle the runtime error and display a message to user.
Exercises

1. How do you make a property read-only?

2. When is Property Set procedure invoked and how many parameter does it contain?

3. What is the use of WithEvents keyword?

4. How do you raise an event from a class module?

5. Create a class to handle data and actions related to a Product. Provide the following methods, properties and events.

Methods - Purchase, Sale, ChangeRate.

Property - Qoh(Read only), Amount (read-only), description

Events – InsufficientStock.

6. What is the use of New keyword? And how do you use it?

7. What is the use of a key in a collection object?

8. What happens when the key that you are searching for is not found in the collection?

